Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
bioRxiv ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38766227

ABSTRACT

During inner ear semicircular canal morphogenesis in zebrafish, patterned canal-genesis zones express genes for extracellular matrix component synthesis. These include hyaluronan and the hyaluronan-binding chondroitin sulfate proteoglycan Versican, which are abundant in the matrices of many developing organs. Charged hyaluronate polymers play a key role in canal morphogenesis through osmotic swelling. However, the developmental factor(s) that control the synthesis of the matrix components and regulation of hyaluronate density and swelling are unknown. Here, we identify the transcription factor, Lmx1b, as a positive transcriptional regulator of hyaluronan, Versican, and chondroitin synthesis genes crucial for canal morphogenesis. We show that Versican regulates hyaluronan density through its protein core, whereas the charged chondroitin side chains contribute to the osmotic swelling of hyaluronate. Versican-tuned properties of hyaluronate matrices may be a broadly used mechanism in morphogenesis with important implications for understanding diseases where these matrices are impaired, and for hydrogel engineering for tissue regeneration.

2.
Ecol Evol ; 14(3): e10856, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38487748

ABSTRACT

Nonnative species are a key agent of global change. However, nonnative invertebrates remain understudied at the community scales where they are most likely to drive local extirpations. We use the North American NEON pitfall trapping network to document the number of nonnative species from 51 invertebrate communities, testing four classes of drivers. We sequenced samples using the eDNA from the sample's storage ethanol. We used AICc informed regression to evaluate how native species richness, productivity, habitat, temperature, and human population density and vehicular traffic account for continent-wide variation in the number of nonnative species in a local community. The percentage of nonnatives varied 3-fold among habitat types and over 10-fold (0%-14%) overall. We found evidence for two types of constraints on nonnative diversity. Consistent with Capacity rules (i.e., how the number of niches and individuals reflect the number of species an ecosystem can support) nonnatives increased with existing native species richness and ecosystem productivity. Consistent with Establishment Rules (i.e., how the dispersal rate of nonnative propagules and the number of open sites limits nonnative species richness) nonnatives increased with automobile traffic-a measure of human-generated propagule pressure-and were twice as common in pastures than native grasslands. After accounting for drivers associated with a community's ability to support native species (native species richness and productivity), nonnatives are more common in communities that are regularly seasonally disturbed (pastures and, potentially deciduous forests) and those experiencing more vehicular traffic. These baseline values across the US North America will allow NEON's monitoring mission to document how anthropogenic change-from disturbance to propagule transport, from temperature to trends in local extinction-further shape biotic homogenization.

3.
Microbiol Spectr ; 12(2): e0350723, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38179941

ABSTRACT

Species within the genus Neisseria are adept at sharing adaptive allelic variation, with commensal species repeatedly transferring resistance to their pathogenic relative Neisseria gonorrhoeae. However, resistance in commensals is infrequently characterized, limiting our ability to predict novel and potentially transferable resistance mechanisms that ultimately may become important clinically. Unique evolutionary starting places of each Neisseria species will have distinct genomic backgrounds, which may ultimately control the fate of evolving populations in response to selection as epistatic and additive interactions coerce lineages along divergent evolutionary trajectories. Alternatively, similar genetic content present across species due to shared ancestry may constrain existing adaptive solutions. Thus, identifying the paths to resistance across commensals may aid in characterizing the Neisseria resistome-or the reservoir of alleles within the genus as well as its depth. Here, we use in vitro evolution of four commensal species to investigate the potential and repeatability of resistance evolution to two antimicrobials, the macrolide azithromycin and the ß-lactam penicillin. After 20 days of selection, commensals evolved resistance to penicillin and azithromycin in 11/16 and 12/16 cases, respectively. Almost all cases of resistance emergence converged on mutations within ribosomal components or the mtrRCDE efflux pump for azithromycin-based selection and mtrRCDE, penA, and rpoB for penicillin selection, thus supporting constrained adaptive solutions despite divergent evolutionary starting points across the genus for these particular drugs. Though drug-selected loci were limited, we do identify novel resistance-imparting mutations. Continuing to explore paths to resistance across different experimental conditions and genomic backgrounds, which could shunt evolution down alternative evolutionary trajectories, will ultimately flesh out the full Neisseria resistome.IMPORTANCENeisseria gonorrhoeae is a global threat to public health due to its rapid acquisition of antibiotic resistance to all first-line treatments. Recent work has documented that alleles acquired from close commensal relatives have played a large role in the emergence of resistance to macrolides and beta-lactams within gonococcal populations. However, commensals have been relatively underexplored for the resistance genotypes they may harbor. This leaves a gap in our understanding of resistance that could be rapidly acquired by the gonococcus through a known highway of horizontal gene exchange. Here, we characterize resistance mechanisms that can emerge in commensal Neisseria populations via in vitro selection to multiple antimicrobials and begin to define the number of paths to resistance. This study, and other similar works, may ultimately aid both surveillance efforts and clinical diagnostic development by nominating novel and conserved resistance mechanisms that may be at risk of rapid dissemination to pathogen populations.


Subject(s)
Anti-Infective Agents , Gonorrhea , Humans , Neisseria , Azithromycin/pharmacology , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Neisseria gonorrhoeae/genetics , Gonorrhea/drug therapy , Anti-Infective Agents/pharmacology , beta-Lactams/pharmacology , Microbial Sensitivity Tests , Penicillins
4.
Parasit Vectors ; 16(1): 424, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37974288

ABSTRACT

BACKGROUND: Mosquitoes are the deadliest organisms in the world, killing an estimated 750,000 people per year due to the pathogens they can transmit. Mosquitoes also pose a major threat to other vertebrate animals. Culex territans is a mosquito species found in temperate zones worldwide that feeds almost exclusively on amphibians and can transmit parasites; however, little is known about its ability to transmit other pathogens, including fungi. Batrachochytrium dendrobatidis (Bd) is a topical pathogenic fungus that spreads through contact. With amphibian populations around the world experiencing mass die-offs and extinctions due to this pathogen, it is critical to study all potential modes of transmission. Because Cx. territans mosquitoes are in contact with their hosts for long periods of time while blood-feeding, we hypothesize that they can transmit and pick up Bd. METHODS: In this study, we first assessed Cx. territans ability to transfer the fungus from an infected surface to a clean one under laboratory conditions. We also conducted a surveillance study of Bd infections in frogs and mosquitoes in the field (Mountain Lake Biological station, VA, USA). In parallel, we determined Cx. territans host preference via blood meal analysis of field caught mosquitoes. RESULTS: We found that this mosquito species can carry the fungus to an uninfected surface, implying that they may have the ability to transmit Bd to their amphibian hosts. We also found that Cx. territans feed primarily on green frogs (Rana clamitans) and bullfrogs (Rana catesbeiana) and that the prevalence of Bd within the frog population at our field site varied between years. CONCLUSIONS: This study provides critical insights into understanding the role of amphibian-biting mosquitoes in transmitting pathogens, which can be applied to disease ecology of susceptible amphibian populations worldwide.


Subject(s)
Culex , Culicidae , Humans , Animals , Culex/parasitology , Batrachochytrium , Anura
5.
J Am Coll Health ; : 1-6, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37856480

ABSTRACT

Objective: This study evaluates Drunken Rewind, an animated digital media campaign designed to reduce binge drinking. Participants: The campaign was targeted to white males aged 18-34, who are at the highest risk of binge drinking. Methods: The intervention consisted of an animated series that merged health communications approaches with marketing strategies to disseminate health messages. Digital metrics and comments were analyzed to assess receptivity toward the intervention. Results: The series amassed over 900,000 views and 1,762 followers across four social media platforms. Viewer retention rate was between 67%-73% over three seasons; 68.3% of comments on the videos were positive. Conclusions: This study adds evidence that a digital intervention aimed at reducing binge drinking can be feasibly implemented and positively received by a population that is difficult to reach with health messaging. This approach may be useful when applied to other health issues young adults perceive to have lower risk.

6.
bioRxiv ; 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37808746

ABSTRACT

Species within the genus Neisseria are especially adept at sharing adaptive allelic variation across species' boundaries, with commensal species repeatedly transferring resistance to their pathogenic relative N. gonorrhoeae. However, resistance in commensal Neisseria is infrequently characterized at both the phenotypic and genotypic levels, limiting our ability to predict novel and potentially transferable resistance mechanisms that ultimately may become important clinically. Unique evolutionary starting places of each Neisseria species will have distinct genomic backgrounds, which may ultimately control the fate of evolving populations in response to selection, as epistatic and additive interactions may coerce lineages along divergent evolutionary trajectories. However alternatively, similar genetic content present across species due to shared ancestry may constrain the adaptive solutions that exist. Thus, identifying the paths to resistance across commensals may aid in characterizing the Neisseria resistome - or the reservoir of alleles within the genus, as well as its depth. Here, we use in vitro evolution of four commensal species to investigate the potential for and repeatability of resistance evolution to two antimicrobials, the macrolide azithromycin and the ß-lactam penicillin. After 20 days of selection, commensals evolved elevated minimum inhibitory concentrations (MICs) to penicillin and azithromycin in 11/16 and 12/16 cases respectively. Almost all cases of resistance emergence converged on mutations within ribosomal components or the mtrRCDE efflux pump for azithromycin-based selection, and mtrRCDE or penA for penicillin selection; thus, supporting constrained adaptive solutions despite divergent evolutionary starting points across the genus for these particular drugs. However, continuing to explore the paths to resistance across different experimental conditions and genomic backgrounds, which could shunt evolution down alternative evolutionary trajectories, will ultimately flesh out the full Neisseria resistome.

7.
BMC Ecol Evol ; 23(1): 51, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37700256

ABSTRACT

BACKGROUND: Biodiversity is generally reduced when non-native species invade an ecosystem. Invasive crayfish, Procambarus clarkii, populate California freshwater streams, and in the Santa Monica Mountains (Los Angeles, USA), their introduction has led to trophic cascades due to omnivorous feeding behavior and a rapid rate of population growth. The native California newt, Taricha torosa, possesses a neurotoxin, tetrodotoxin (TTX), that affects freshwater animal behavior. Given P. clarkii has a limited evolutionary history with TTX, we hypothesized that TTX may affect crayfish feeding behaviors. To determine if TTX affects P. clarkii behavior, we measured cumulative movement and various feeding behaviors of P. clarkii exposed to (i) waterborne, ecologically realistic concentrations of TTX (~ 3.0 × 10- 8 moles/L), (ii) an anuran chemical cue to account for intraguild cues, or (iii) a T. torosa chemical cue with quantitated TTX in it (~ 6.2 × 10- 8 moles/L). RESULTS: We found that the presence of TTX in any form significantly reduced crayfish movement and decreased the amount of food consumed over time. Crayfish responses to the anuran treatment did not significantly differ from controls. CONCLUSION: Our laboratory results show that naturally occurring neurotoxin from native California newts limits invasive crayfish foraging and feeding rates, which may play a role in preserving local stream ecosystems by limiting invasive crayfish behaviors that are detrimental to biodiversity.


Subject(s)
Moles , Skin Neoplasms , Toxins, Biological , Animals , Neurotoxins , Rivers , Astacoidea , Ecosystem , Biodiversity , Seafood , Tetrodotoxin/toxicity , Amphibians
8.
Toxicol Ind Health ; 39(10): 564-582, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37527434

ABSTRACT

Inhalation exposure to cosmetic talc has generated much scientific debate regarding its potential as a risk factor for mesothelioma, a rare, but fatal cancer. Barbers, hairdressers, and cosmetologists have regularly used cosmetic talc-containing products, but the collective epidemiological evidence for mesothelioma in these occupations has yet to be described. As such, we conducted a systematic review of PubMed and the National Institute for Occupational Safety and Health's (NIOSH) Numbered Publications list to identify original epidemiological literature reporting measures of association between these occupations and incidence of or death from mesothelioma. Literature screening was performed independently twice, the results of which were summarized and tabulated and underwent a review for their accuracy. A total of 12 studies met our inclusion criteria, including three cohort, six case-control, and three proportionate mortality/registration studies. The data from these studies were collected in 13 European and North American countries, spanning more than 50 years. We supplemented this review with queries of occupational mortality databases that are managed by the Washington State Department of Health and NIOSH for 26 U.S. states. Most findings were null and if statistically significant, nearly all showed an inverse relationship, indicative of a protective effect of these occupations on mesothelioma risk. Overall, the epidemiological evidence does not support an increased risk of mesothelioma for these occupations. This research fills an important data gap on the etiology of mesothelioma in barbers, hairdressers, and cosmetologists, and provides a benchmark for those with comparatively less exposure, such as non-occupational users of similar cosmetic talc-containing products.


Subject(s)
Cosmetics , Mesothelioma , Occupational Exposure , Humans , Talc/toxicity , Mesothelioma/chemically induced , Mesothelioma/epidemiology , Occupational Exposure/adverse effects , Cosmetics/adverse effects , Risk Factors
9.
Front Cell Dev Biol ; 10: 864022, 2022.
Article in English | MEDLINE | ID: mdl-35573689

ABSTRACT

Multiple biological factors, including age, sex, and genetics, influence Alzheimer's disease (AD) risk. Of the 6.2 million Americans living with Alzheimer's dementia in 2021, 3.8 million are women and 2.4 million are men. The strongest genetic risk factor for sporadic AD is apolipoprotein E-e4 (APOE-e4). Female APOE-e4 carriers develop AD more frequently than age-matched males and have more brain atrophy and memory loss. Consequently, biomarkers that are sensitive to biological risk factors may improve AD diagnostics and may provide insight into underlying mechanistic changes that could drive disease progression. Here, we have assessed the effects of sex and APOE-e4 on the miRNA cargo of cerebrospinal fluid (CSF) extracellular vesicles (EVs) in AD. We used ultrafiltration (UF) combined with size exclusion chromatography (SEC) to enrich CSF EVs (e.g., Flotillin+). CSF EVs were isolated from female and male AD or controls (CTLs) that were either APOE-e3,4 or -e3,3 positive (n = 7/group, 56 total). MiRNA expression levels were quantified using a custom TaqMan™ array that assayed 190 miRNAs previously found in CSF, including 25 miRNAs that we previously validated as candidate AD biomarkers. We identified changes in the EV miRNA cargo that were affected by both AD and sex. In total, four miRNAs (miR-16-5p, -331-3p, -409-3p, and -454-3p) were significantly increased in AD vs. CTL, independent of sex and APOE-e4 status. Pathway analysis of the predicted gene targets of these four miRNAs with identified pathways was highly relevant to neurodegeneration (e.g., senescence and autophagy). There were also three miRNAs (miR-146b-5p, -150-5p, and -342-3p) that were significantly increased in females vs. males, independent of disease state and APOE-e4 status. We then performed a statistical analysis to assess the effect of APOE genotype in AD within each sex and found that APOE-e4 status affects different subsets of CSF EV miRNAs in females vs. males. Together, this study demonstrates the complexity of the biological factors associated with AD risk and the impact on EV miRNAs, which may contribute to AD pathophysiology.

10.
Ecol Evol ; 12(4): e8848, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35475175

ABSTRACT

Extreme weather events are predicted to increase as a result of climate change, yet amphibian responses to extreme disturbance events remain understudied, especially in the Neotropics. Recently, an unprecedented windstorm within a protected Costa Rican rainforest opened large light gaps in sites where we have studied behavioral responses of diurnal strawberry poison frogs (Oophaga pumilio) to ultraviolet radiation for nearly two decades. Previous studies demonstrate that O. pumilio selects and defends perches where ultraviolet radiation (UV-B) is relatively low, likely because of the lethal and sublethal effects of UV-B. In this natural experiment, we quantified disturbance to O. pumilio habitat, surveyed for the presence of O. pumilio in both high-disturbance and low-disturbance areas of the forest, and assessed UV-B levels and perch selection behavior in both disturbance levels. Fewer frogs were detected in high-disturbance habitat than in low-disturbance habitat. In general, frogs were found vocalizing at perches in both disturbance levels, and in both cases, in significantly lower UV-B levels relative to ambient adjacent surroundings. However, frogs at perches in high-disturbance areas were exposed to UV-B levels nearly 10 times greater than males at perches in low-disturbance areas. Thus, behavioral avoidance of UV-B may not reduce the risks associated with elevated exposure under these novel conditions, and similarly, if future climate and human-driven land-use change lead to sustained analogous environments.

11.
Health Educ Res ; 36(3): 286-294, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34252187

ABSTRACT

Large-scale digital flu vaccine campaigns have experienced difficulty increasing vaccination coverage among African Americans and Hispanics, and are routinely inundated by negative responses from vaccine opponents. A digital campaign employing user-generated content from social media 'micro' influencers who are predominantly followed by African Americans and Hispanics was implemented during the 2018-19 and 2019-20 flu seasons to disseminate positive information about the flu vaccine. At the time, this constituted the largest influencer-driven health campaign focused on these communities in the United States. Comments on posts were qualitatively coded to determine content perceptions among those exposed to posts. Digital metrics were also analyzed. During Year 1, posts reached 9 million+ social media users and generated 64 612 likes or shares, and 1512 responses. In Year 2, posts reached 8 million+ users and generated 155 600 likes or shares, and 3122 responses. Around 94% of public responses to posts were positive, suggesting this is a promising strategy to communicate health information and could shift social norms, particularly for heavily debated topics such as vaccination. This strategy represents a more community-led and participatory approach than most large-scale vaccination campaigns have attempted, with immediate applicability to communications about the COVID-19 vaccine.


Subject(s)
COVID-19 , Influenza Vaccines , Social Media , COVID-19 Vaccines , Humans , SARS-CoV-2 , United States
12.
Front Microbiol ; 12: 657754, 2021.
Article in English | MEDLINE | ID: mdl-33841384

ABSTRACT

The gastrointestinal tract (GIT) of vertebrates contains a series of organs beginning with the mouth and ending with the anus or cloacal opening. Each organ represents a unique environment for resident microorganisms. Due to their simple digestive anatomy, snakes are good models for studying microbiome variation along the GIT. Cloacal sampling captures the majority of the microbial diversity found in the GIT of snakes-yet little is known about the oral microbiota of snakes. Most research on the snake mouth and gut microbiota are limited to studies of a single species or captive-bred individuals. It therefore remains unclear how a host's life history, diet, or evolutionary history correlate with differences in the microbial composition within the mouths and guts of wild snakes. We sampled the mouth and gut microbial communities from three species of Asian venomous snakes and utilized 16S rRNA microbial inventories to test if host phylogenetic and ecological differences correlate with distinct microbial compositions within the two body sites. These species occupy three disparate habitat types: marine, semi-arboreal, and arboreal, our results suggest that the diversity of snake mouth and gut microbial communities correlate with differences in both host ecology and phylogeny.

13.
Hum Mol Genet ; 30(10): 908-922, 2021 05 29.
Article in English | MEDLINE | ID: mdl-33822942

ABSTRACT

Mucolipidosis IV (MLIV) is an orphan disease leading to debilitating psychomotor deficits and vision loss. It is caused by loss-of-function mutations in the MCOLN1 gene that encodes the lysosomal transient receptor potential channel mucolipin1, or TRPML1. With no existing therapy, the unmet need in this disease is very high. Here, we showed that AAV-mediated CNS-targeted gene transfer of the human MCOLN1 gene rescued motor function and alleviated brain pathology in the MLIV mouse model. Using the AAV-PHP.b vector in symptomatic mice, we showed long-term reversal of declined motor function and significant delay of paralysis. Next, using self-complementary AAV9 clinical candidate vector, we showed that its intracerebroventricular administration in post-natal day 1 mice significantly improved motor function, myelination and reduced lysosomal storage load in the MLIV mouse brain. Based on our data and general advancements in the gene therapy field, we propose scAAV9-mediated CSF-targeted MCOLN1 gene transfer as a therapeutic strategy in MLIV.


Subject(s)
Genetic Therapy , Mucolipidoses/therapy , Nervous System Diseases/therapy , Transient Receptor Potential Channels/genetics , Animals , Brain/metabolism , Brain/pathology , Dependovirus/genetics , Disease Models, Animal , Humans , Loss of Function Mutation/genetics , Lysosomes/genetics , Lysosomes/pathology , Mice , Mucolipidoses/cerebrospinal fluid , Mucolipidoses/genetics , Mucolipidoses/pathology , Nervous System Diseases/cerebrospinal fluid , Nervous System Diseases/genetics , Nervous System Diseases/pathology
14.
Carbohydr Polym ; 251: 117112, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33142649

ABSTRACT

Exploiting the shape of Pickering stabilizers offers the ability to unlock the full potential of nanoparticle-stabilized emulsions for applications in enhanced oil recovery, pharmaceuticals, cosmetics, and coatings. In this work, we utilize engineered polysaccharide particles derived from the enzymatic polymerization of glucose from sucrose with controlled shape for the stabilization of dodecane-in-water emulsions. Altering the particle shape (spherical aggregates, fibrids, or platelets), while maintaining a neutral surface charge allows for a systematic examination of the role of particle shape in the stabilization of emulsions. We find that platelet-shaped particles reduce the interfacial tension and result in the smallest droplet size, while emulsions stabilized by aggregates and fibrids are governed by a network of particles in the continuous phase. Exploiting the synergy between these particles allowed for the tuning of their microstructure and rheological signature which allows us to map and tailor these emulsions for a wider variety of applications.


Subject(s)
Enzymes/metabolism , Nanoparticles/chemistry , Polysaccharides/chemistry , Surface-Active Agents/chemistry , Emulsions , Particle Size , Polymerization , Water/chemistry
15.
Appl Environ Microbiol ; 86(24)2020 11 24.
Article in English | MEDLINE | ID: mdl-33008823

ABSTRACT

The bacterium Burkholderia thailandensis produces an arsenal of secondary metabolites that have diverse structures and roles in the ecology of this soil-dwelling bacterium. In coculture experiments, B. thailandensis strain E264 secretes an antimicrobial that nearly eliminates another soil bacterium, Bacillus subtilis strain 168. To identify the antimicrobial, we used a transposon mutagenesis approach. This screen identified antimicrobial-defective mutants with insertions in the hmqA, hmqC, and hmqF genes involved in biosynthesis of a family of 2-alkyl-4(1H)-quinolones called 4-hydroxy-3-methyl-2-alkenylquinolines (HMAQs), which are closely related to the Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs). Insertions also occurred in the previously uncharacterized gene BTH_II1576 ("hmqL"). The results confirm that BTH_II1576 is involved in generating N-oxide derivatives of HMAQs (HMAQ-NOs). Synthetic HMAQ-NO is active against B. subtilis 168, showing ∼50-fold more activity than HMAQ. Both the methyl group and the length of the carbon side chain account for the high activity of HMAQ-NO. The results provide new information on the biosynthesis and activities of HMAQs and reveal new insight into how these molecules might be important for the ecology of B. thailandensisIMPORTANCE The soil bacterium Burkholderia thailandensis produces 2-alkyl-4(1H)-quinolones that are mostly methylated 4-hydroxyalkenylquinolines, a family of relatively unstudied metabolites similar to molecules also synthesized by Pseudomonas aeruginosa Several of the methylated 4-hydroxyalkenylquinolines have antimicrobial activity against other species. We show that Bacillus subtilis strain 168 is particularly susceptible to N-oxidated methylalkenylquinolines (HMAQ-NOs). We confirmed that HMAQ-NO biosynthesis requires the previously unstudied protein HmqL. These results provide new information about the biology of 2-alkyl-4(1H)-quinolones, particularly the methylated 4-hydroxyalkenylquinolines, which are unique to B. thailandensis This study also has importance for understanding B. thailandensis secondary metabolites and has implications for potential therapeutic development.


Subject(s)
Anti-Infective Agents/pharmacology , Burkholderia/metabolism , Quinolones/metabolism , Methylation
16.
J Alzheimers Dis ; 78(1): 245-263, 2020.
Article in English | MEDLINE | ID: mdl-32955460

ABSTRACT

BACKGROUND: Cerebrospinal fluid (CSF) microRNA (miRNA) biomarkers of Alzheimer's disease (AD) have been identified, but have not been evaluated in prodromal AD, including mild cognitive impairment (MCI). OBJECTIVE: To assess whether a set of validated AD miRNA biomarkers in CSF are also sensitive to early-stage pathology as exemplified by MCI diagnosis. METHODS: We measured the expression of 17 miRNA biomarkers for AD in CSF samples from AD, MCI, and cognitively normal controls (NC). We then examined classification performance of the miRNAs individually and in combination. For each miRNA, we assessed median expression in each diagnostic group and classified markers as trending linearly, nonlinearly, or lacking any trend across the three groups. For trending miRNAs, we assessed multimarker classification performance alone and in combination with apolipoprotein E ɛ4 allele (APOEɛ4) genotype and amyloid-ß42 to total tau ratio (Aß42:T-Tau). We identified predicted targets of trending miRNAs using pathway analysis. RESULTS: Five miRNAs showed a linear trend of decreasing median expression across the ordered diagnoses (control to MCI to AD). The trending miRNAs jointly predicted AD with area under the curve (AUC) of 0.770, and MCI with AUC of 0.705. Aß42:T-Tau alone predicted MCI with AUC of 0.758 and the AUC improved to 0.813 (p = 0.051) after adding the trending miRNAs. Multivariate correlation of the five trending miRNAs with Aß42:T-Tau was weak. CONCLUSION: Selected miRNAs combined with Aß42:T-Tau improved classification performance (relative to protein biomarkers alone) for MCI, despite a weak correlation with Aß42:T-Tau. Together these data suggest that that these miRNAs carry novel information relevant to AD, even at the MCI stage. Preliminary target prediction analysis suggests novel roles for these biomarkers.


Subject(s)
Alzheimer Disease/cerebrospinal fluid , Cognitive Dysfunction/cerebrospinal fluid , MicroRNAs/cerebrospinal fluid , Aged , Aged, 80 and over , Amyloid beta-Peptides/cerebrospinal fluid , Apolipoprotein E4 , Biomarkers/cerebrospinal fluid , Case-Control Studies , Disease Progression , Female , Humans , Male , Middle Aged , Neuropsychological Tests , tau Proteins/cerebrospinal fluid
17.
Dis Model Mech ; 13(7)2020 07 30.
Article in English | MEDLINE | ID: mdl-32586947

ABSTRACT

Mucolipidosis type IV (MLIV) is a lysosomal disease caused by mutations in the MCOLN1 gene that encodes the endolysosomal transient receptor potential channel mucolipin-1, or TRPML1. MLIV results in developmental delay, motor and cognitive impairments, and vision loss. Brain abnormalities include thinning and malformation of the corpus callosum, white-matter abnormalities, accumulation of undegraded intracellular 'storage' material and cerebellar atrophy in older patients. Identification of the early events in the MLIV course is key to understanding the disease and deploying therapies. The Mcoln1-/- mouse model reproduces all major aspects of the human disease. We have previously reported hypomyelination in the MLIV mouse brain. Here, we investigated the onset of hypomyelination and compared oligodendrocyte maturation between the cortex/forebrain and cerebellum. We found significant delays in expression of mature oligodendrocyte markers Mag, Mbp and Mobp in the Mcoln1-/- cortex, manifesting as early as 10 days after birth and persisting later in life. Such delays were less pronounced in the cerebellum. Despite our previous finding of diminished accumulation of the ferritin-bound iron in the Mcoln1-/- brain, we report no significant changes in expression of the cytosolic iron reporters, suggesting that iron-handling deficits in MLIV occur in the lysosomes and do not involve broad iron deficiency. These data demonstrate very early deficits of oligodendrocyte maturation and critical regional differences in myelination between the forebrain and cerebellum in the mouse model of MLIV. Furthermore, they establish quantitative readouts of the MLIV impact on early brain development, useful to gauge efficacy in pre-clinical trials.


Subject(s)
Brain/metabolism , Cell Differentiation , Mucolipidoses/metabolism , Oligodendroglia/metabolism , Transient Receptor Potential Channels/metabolism , Age Factors , Animals , Brain/pathology , Cerebellum/metabolism , Cerebellum/pathology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Disease Models, Animal , Gene Expression Regulation, Developmental , Mice, Inbred C57BL , Mice, Knockout , Mucolipidoses/genetics , Mucolipidoses/pathology , Myelin Basic Protein/metabolism , Myelin Proteins/metabolism , Myelin-Associated Glycoprotein/metabolism , Oligodendrocyte Precursor Cells/metabolism , Oligodendrocyte Precursor Cells/pathology , Oligodendroglia/pathology , Prosencephalon/metabolism , Prosencephalon/pathology , Transient Receptor Potential Channels/genetics
18.
J Extracell Vesicles ; 10(1): e12028, 2020 11.
Article in English | MEDLINE | ID: mdl-33613872

ABSTRACT

Methamphetamine (MA) is the largest drug threat across the globe, with health effects including neurotoxicity and cardiovascular disease. Recent studies have begun to link microRNAs (miRNAs) to the processes related to MA use and addiction. Our studies are the first to analyse plasma EVs and their miRNA cargo in humans actively using MA (MA-ACT) and control participants (CTL). In this cohort we also assessed the effects of tobacco use on plasma EVs. We used vesicle flow cytometry to show that the MA-ACT group had an increased abundance of EV tetraspanin markers (CD9, CD63, CD81), but not pro-coagulant, platelet-, and red blood cell-derived EVs. We also found that of the 169 plasma EV miRNAs, eight were of interest in MA-ACT based on multiple statistical criteria. In smokers, we identified 15 miRNAs of interest, two that overlapped with the eight MA-ACT miRNAs. Three of the MA-ACT miRNAs significantly correlated with clinical features of MA use and target prediction with these miRNAs identified pathways implicated in MA use, including cardiovascular disease and neuroinflammation. Together our findings indicate that MA use regulates EVs and their miRNA cargo, and support that further studies are warranted to investigate their mechanistic role in addiction, recovery, and recidivism.


Subject(s)
Amphetamine-Related Disorders/blood , Circulating MicroRNA/blood , Extracellular Vesicles/metabolism , Methamphetamine/adverse effects , Adult , Biomarkers/blood , Female , Flow Cytometry , Humans , Male , Methamphetamine/administration & dosage , Middle Aged
19.
Sci Rep ; 9(1): 5989, 2019 04 12.
Article in English | MEDLINE | ID: mdl-30979924

ABSTRACT

Interspecific hybridization or barriers to hybridization may have contributed to the diversification of Antarctic icefishes (Channichthyidae), but data supporting these hypotheses is scarce. To understand the potential for hybridization and to investigate reproductive isolating mechanisms among icefish species, we performed in vitro fertilization experiments using eggs from a female blackfin icefish Chaenocephalus aceratus and sperm from a male of another genera, the ocellated icefish Chionodraco rastrospinosus. Sequencing of genomic and mitochondrial DNA confirmed the intergeneric hybrid nature of resulting embryos which successfully developed and hatched as active larvae at about four and a half months during the Antarctic winter. This result demonstrates the compatibility of gametes of these two species and the viability of resulting zygotes and larvae. Due to logistic constraints and the slow developmental rate of icefishes, we could not test for long-term hybrid viability, fertility, fitness, or hybrid breakdown. Analysis of our fishing records and available literature, however, suggests that the strongest barriers to hybridization among parapatric icefish species are likely to be behavioral and characterized by assortative mating and species-specific courtship and nesting behaviors. This conclusion suggests that, in long-lived fish species with late sexual maturity and high energetic investment in reproduction like icefishes, pre-mating barriers are energetically more efficient than post-mating barriers to prevent hybridization.


Subject(s)
Hybridization, Genetic , Perciformes/genetics , Reproductive Isolation , Animals , Ecosystem , Perciformes/physiology
20.
Hum Mol Genet ; 27(15): 2725-2738, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29771310

ABSTRACT

Mucolipidosis IV (MLIV) is an orphan neurodevelopmental disease that causes severe neurologic dysfunction and loss of vision. Currently there is no therapy for MLIV. It is caused by loss of function of the lysosomal channel mucolipin-1, also known as TRPML1. Knockout of the Mcoln1 gene in a mouse model mirrors clinical and neuropathologic signs in humans. Using this model, we previously observed robust activation of microglia and astrocytes in early symptomatic stages of disease. Here we investigate the consequence of mucolipin-1 loss on astrocyte inflammatory activation in vivo and in vitro and apply a pharmacologic approach to restore Mcoln1-/- astrocyte homeostasis using a clinically approved immunomodulator, fingolimod. We found that Mcoln1-/- mice over-express numerous pro-inflammatory cytokines, some of which were also over-expressed in astrocyte cultures. Changes in the cytokine profile in Mcoln1-/- astrocytes are concomitant with changes in phospho-protein signaling, including activation of PI3K/Akt and MAPK pathways. Fingolimod promotes cytokine homeostasis, down-regulates signaling within the PI3K/Akt and MAPK pathways and restores the lysosomal compartment in Mcoln1-/- astrocytes. These data suggest that fingolimod is a promising candidate for preclinical evaluation in our MLIV mouse model, which, in case of success, can be rapidly translated into clinical trial.


Subject(s)
Astrocytes/drug effects , Astrocytes/pathology , Brain/drug effects , Fingolimod Hydrochloride/pharmacology , Mucolipidoses/pathology , Animals , Brain/metabolism , Brain/pathology , Cells, Cultured , Cytokines/metabolism , Disease Models, Animal , Encephalitis/drug therapy , Encephalitis/genetics , Encephalitis/metabolism , Encephalitis/pathology , Female , Gene Expression Regulation , Lysosomal Membrane Proteins/metabolism , Male , Mice, Knockout , Mucolipidoses/drug therapy , Phosphatidylinositol 3-Kinases/metabolism , Phosphoproteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Transient Receptor Potential Channels/genetics , Transient Receptor Potential Channels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...