Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Genesis ; 52(7): 687-94, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24700590

ABSTRACT

Nipbl (Scc2) and Mau2 (Scc4) encode evolutionary conserved proteins that play a vital role for loading the cohesin complex onto chromosomes, thereby ensuring accurate chromosome segregation during cell division. While mutations in human NIPBL are known to cause the developmental disorder Cornelia de Lange syndrome, the functions of Nipbl and Mau2 in mammalian development are poorly defined. Here we generated conditional alleles for both genes in mice and show that neural crest cell-specific inactivation of Nipbl or Mau2 strongly affects craniofacial development. Surprisingly, the early phase of neural crest cell proliferation and migration is only moderately affected in these mutants. Moreover, we found that Mau2 single homozygous mutants exhibited a more severe craniofacial phenotype when compared to that of Nipbl;Mau2 double homozygous mutants. This raises the possibility that the Mau2/Nipbl protein interaction is not only required for cohesin loading, but may also be required to restrict the level of Nipbl involved in regulating gene expression. Together, the data suggest that proliferating neural crest cells tolerate a substantial reduction of cohesin loading proteins and we propose that the successive decrease of cohesin loading proteins in neural crest cells may alter developmental gene regulation in a highly dynamic manner.


Subject(s)
Chromosomal Proteins, Non-Histone/genetics , Craniofacial Abnormalities/genetics , Neural Crest/metabolism , Transcription Factors/genetics , Animals , Cell Cycle Proteins , Chromosomal Proteins, Non-Histone/metabolism , Craniofacial Abnormalities/embryology , DNA-Binding Proteins , Female , Male , Mice , Transcription Factors/metabolism
2.
FEBS Lett ; 580(17): 4242-5, 2006 Jul 24.
Article in English | MEDLINE | ID: mdl-16831426

ABSTRACT

Expression of the gene encoding the MKP-3/Pyst1 protein phosphatase, which inactivates ERK MAPK, is induced by FGF. However, which intracellular signalling pathway mediates this expression is unclear, with essential roles proposed for both ERK and PI(3)K in chick embryonic limb. Here, we report that MKP-3/Pyst1 expression is sensitive to inhibition of ERK or MAPKK, that endogenous MKP-3/Pyst1 co-localizes with activated ERK, and expression of MKP-3/Pyst1 in mice lacking PDK1, an essential mediator of PI(3)K signalling. We conclude that MKP-3/Pyst1 expression is mediated by ERK activation and that negative feedback control predominates in limiting the extent of FGF-induced ERK activity.


Subject(s)
Epidermal Growth Factor/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation, Developmental/physiology , Gene Expression Regulation, Enzymologic/physiology , MAP Kinase Signaling System/physiology , Phosphoprotein Phosphatases/biosynthesis , Protein Tyrosine Phosphatases/biosynthesis , Animals , Chick Embryo , Dual Specificity Phosphatase 6 , Mice , Mice, Transgenic , Phosphatidylinositol 3-Kinases/metabolism
3.
Genes Dev ; 20(10): 1365-77, 2006 May 15.
Article in English | MEDLINE | ID: mdl-16702409

ABSTRACT

Talpid3 is a classical chicken mutant with abnormal limb patterning and malformations in other regions of the embryo known to depend on Hedgehog signaling. We combined the ease of manipulating chicken embryos with emerging knowledge of the chicken genome to reveal directly the basis of defective Hedgehog signal transduction in talpid3 embryos and to identify the talpid3 gene. We show in several regions of the embryo that the talpid3 phenotype is completely ligand independent and demonstrate for the first time that talpid3 is absolutely required for the function of both Gli repressor and activator in the intracellular Hedgehog pathway. We map the talpid3 locus to chromosome 5 and find a frameshift mutation in a KIAA0586 ortholog (ENSGALG00000012025), a gene not previously attributed with any known function. We show a direct causal link between KIAA0586 and the mutant phenotype by rescue experiments. KIAA0586 encodes a novel protein, apparently specific to vertebrates, that localizes to the cytoplasm. We show that Gli3 processing is abnormal in talpid3 mutant cells but that Gli3 can still translocate to the nucleus. These results suggest that the talpid3 protein operates in the cytoplasm to regulate the activity of both Gli repressor and activator proteins.


Subject(s)
Avian Proteins/genetics , Chick Embryo/abnormalities , Chickens/genetics , Polydactyly/genetics , Trans-Activators/metabolism , Amino Acid Sequence , Animals , Avian Proteins/analysis , Avian Proteins/metabolism , Chick Embryo/metabolism , Cytoplasm/chemistry , Cytoplasm/metabolism , Gene Expression , Gene Expression Regulation, Developmental/genetics , Hedgehog Proteins , Kruppel-Like Transcription Factors/metabolism , Molecular Sequence Data , Neural Tube Defects/embryology , Neural Tube Defects/genetics , Physical Chromosome Mapping , Protein Transport , Signal Transduction , Somites/cytology
4.
Development ; 132(6): 1305-14, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15716340

ABSTRACT

Cells in the early vertebrate somite receive cues from surrounding tissues, which are important for their specification. A number of signalling pathways involved in somite patterning have been described extensively. By contrast, the interactions between cells from different regions within the somite are less well characterised. Here, we demonstrate that myotomally derived FGFs act through the MAPK signal transduction cascade and in particular, ERK1/2 to activate scleraxis expression in a population of mesenchymal progenitor cells in the dorsal sclerotome. We show that the levels of active, phosphorylated ERK protein in the developing somite are crucial for the expression of scleraxis and Mkp3. MKP3 is a dual specificity phosphatase and a specific antagonist of ERK MAP kinases and we demonstrate that in somites Mkp3 transcription depends on the presence of active ERK. Therefore, MKP3 and ERK MAP kinase constitute a negative feedback loop activated by FGF in sclerotomal progenitor cells. We propose that tight control of ERK signalling strength by MKP3 is important for the appropriate regulation of downstream cellular responses including the activation of scleraxis. We show that increased or decreased levels of phosphorylated ERK result in the loss of scleraxis transcripts and the loss of distal rib development, highlighting the importance of the MKP3-ERK-MAP kinase mediated feedback loop for cell specification and differentiation.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation/physiology , Protein Tyrosine Phosphatases/metabolism , Ribs/embryology , Somites/enzymology , Transcription Factors/genetics , Animals , Avian Proteins , Basic Helix-Loop-Helix Transcription Factors , Chick Embryo , Dual Specificity Phosphatase 6 , Fibroblast Growth Factors/metabolism , RNA, Messenger/metabolism , Transcription Factors/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...