Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Acoust Soc Am ; 154(3): 1585-1595, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37699104

ABSTRACT

Bio-inspired geometries have many applications in engineering, including in the field of noise control. In this work, the aeroacoustic performance of a seal vibrissa shaped cylinder (SVSC) is investigated and compared to that of a circular cylinder at Re = 37 000. Experiments conducted in an anechoic wind tunnel are compared to results from a hybrid aeroacoustic simulation with excellent agreement observed between the two. The overall sound pressure level is found to be 24.3 dB lower for the SVSC, and no prominent narrowband component is observed in the acoustic spectrum. Analysis of the flow field and surface pressure fluctuations reveals that this is because the usual large-scale alternating vortex shedding realized for bluff body flows is absent for the SVSC. Instead, smaller uncorrelated vortices are shed from the upper and lower sides of the geometry, which, when combined with a lower spanwise correlation, results in a much lower acoustic intensity spread over a broader frequency range.

2.
Am J Trop Med Hyg ; 83(3): 489-95, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20810808

ABSTRACT

We compare, contrast, and evaluate methods to quantify genetic markers of antimalarial drug resistance. Frequency estimates should be reported along with crude prevalence. There are four main potential methods to estimate frequencies in blood samples: simple counting of single nucleotide polymorphisms (SNPs) and haplotypes in samples with multiplicity of infection (MOI) = 1; SNP counting in samples with MOI < or = 2; SNP and haplotypes counting in samples with unambiguous genotypes; statistical inference using SNP and MOI data from all samples. Large differences between the methods became apparent when analyzing field data with high MOI. Simple counting dramatically reduced sample size and estimate precision, and we show that analysis of unambiguous samples is biased, leaving maximum likelihood or similar statistical inference as the only practical option. It is essential to account for genotyping missing minor clones; ignoring this phenomenon resulted in a 2-fold underestimation of SNPs and haplotypes present at low frequencies.


Subject(s)
Antimalarials/pharmacology , Drug Resistance/genetics , Genetic Markers , Malaria/drug therapy , Animals , Humans , Malaria/blood , Mutation , Polymorphism, Single Nucleotide
3.
PLoS Med ; 4(7): e229, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17608562

ABSTRACT

BACKGROUND: Malaria prevention in Africa merits particular attention as the world strives toward a better life for the poorest. Insecticide-treated nets (ITNs) represent a practical means to prevent malaria in Africa, so scaling up coverage to at least 80% of young children and pregnant women by 2010 is integral to the Millennium Development Goals (MDG). Targeting individual protection to vulnerable groups is an accepted priority, but community-level impacts of broader population coverage are largely ignored even though they may be just as important. We therefore estimated coverage thresholds for entire populations at which individual- and community-level protection are equivalent, representing rational targets for ITN coverage beyond vulnerable groups. METHODS AND FINDINGS: Using field-parameterized malaria transmission models, we show that high (80% use) but exclusively targeted coverage of young children and pregnant women (representing <20% of the population) will deliver limited protection and equity for these vulnerable groups. In contrast, relatively modest coverage (35%-65% use, with this threshold depending on ecological scenario and net quality) of all adults and children, rather than just vulnerable groups, can achieve equitable community-wide benefits equivalent to or greater than personal protection. CONCLUSIONS: Coverage of entire populations will be required to accomplish large reductions of the malaria burden in Africa. While coverage of vulnerable groups should still be prioritized, the equitable and communal benefits of wide-scale ITN use by older children and adults should be explicitly promoted and evaluated by national malaria control programmes. ITN use by the majority of entire populations could protect all children in such communities, even those not actually covered by achieving existing personal protection targets of the MDG, Roll Back Malaria Partnership, or the US President's Malaria Initiative.


Subject(s)
Bedding and Linens , Insecticides/administration & dosage , Malaria/prevention & control , Mosquito Control/methods , Adult , Africa , Algorithms , Animals , Child , Female , Humans , Malaria/transmission , Models, Biological , Pregnancy , Pregnancy Complications, Parasitic/prevention & control
4.
Malar J ; 4: 7, 2005 Jan 25.
Article in English | MEDLINE | ID: mdl-15667666

ABSTRACT

BACKGROUND: Mosquitoes sampling is an important component in malaria control. However, most of the methods used have several shortcomings and hence there is a need to develop and calibrate new methods. The Mbita trap for capturing host-seeking mosquitoes was recently developed and successfully tested in Kenya. However, the Mbita trap is less effective at catching outdoor-biting Anopheles funestus and Anopheles arabiensis in Madagascar and, thus, there is need to further evaluate this trap in diverse epidemiological settings. This study reports a field evaluation of the Mbita trap in a rice irrigation scheme in Kenya METHODS: The mosquito sampling efficiency of the Mbita trap was compared to that of the CDC light trap and the human landing catch in western Kenya. Data was analysed by Bayesian regression of linear and non-linear models. RESULTS: The Mbita trap caught about 17%, 60%, and 20% of the number of An. arabiensis, An. funestus, and culicine species caught in the human landing collections respectively. There was consistency in sampling proportionality between the Mbita trap and the human landing catch for both An. arabiensis and the culicine species. For An. funestus, the Mbita trap portrayed some density-dependent sampling efficiency that suggested lowered sampling efficiency of human landing catch at low densities. The CDC light trap caught about 60%, 120%, and 552% of the number of An. arabiensis, An. funestus, and culicine species caught in the human landing collections respectively. There was consistency in the sampling proportionality between the CDC light trap and the human landing catch for both An. arabiensis and An. funestus, whereas for the culicines, there was no simple relationship between the two methods. CONCLUSIONS: The Mbita trap is less sensitive than either the human landing catch or the CDC light trap. However, for a given investment of time and money, it is likely to catch more mosquitoes over a longer (and hence more representative) period. This trap can therefore be recommended for use by community members for passive mosquito surveillance. Nonetheless, there is still a need to develop new sampling methods for some epidemiological settings. The human landing catch should be maintained as the standard reference method for use in calibrating new methods for sampling the human biting population of mosquitoes.


Subject(s)
Anopheles/physiology , Culicidae/physiology , Insect Control/instrumentation , Insect Vectors/physiology , Animals , Anopheles/classification , Culicidae/classification , Female , Humans , Insect Control/ethics , Insect Vectors/classification , Kenya , Malaria/prevention & control , Male , Polymerase Chain Reaction/veterinary , Population Surveillance/methods
5.
Am J Trop Med Hyg ; 70(1): 33-7, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14971695

ABSTRACT

The mosquito sampling efficiency of a new bed net trap (the Mbita trap) was compared with that of the Centers for Disease Control miniature light trap (hung adjacent to an occupied bed net) and the human landing catch in western Kenya. Overall, the Mbita trap caught 48.7 +/- 4.8% (mean +/- SEM) the number of Anopheles gambiae Giles sensu lato caught in the human landing catch and 27.4 +/- 8.2% of the number caught by the light trap. The corresponding figures for Anopheles funestus Giles were 74.6 +/- 1.3% and 39.2 +/- 1.9%, respectively. Despite the clear differences in the numbers of mosquitoes caught by each method, both the Mbita trap and light trap catches were directly proportional to human landing catches regardless of mosquito density. No significant differences in parity or sporozoite incidence were observed between mosquitoes caught by the three methods for either An. gambiae s.l. or An. funestus. Identification of the sibling species of the An. gambiae complex by a polymerase chain reaction indicated that the ratio of An. gambiae Giles sensu stricto to An. arabiensis Patton did not vary according to the sampling method used. It is concluded that the Mbita trap is a promising tool for sampling malaria vector populations since its catch can be readily converted into equivalent human biting catch, it can be applied more intensively, it requires neither expensive equipment nor skilled personnel, and it samples mosquitoes in an exposure-free manner. Such intensive sampling capability will allow cost-effective surveillance of malaria transmission at much finer spatial and temporal resolution than has been previously possible.


Subject(s)
Anopheles , Insect Vectors , Malaria/prevention & control , Mosquito Control/methods , Animals , Bedding and Linens , Female , Humans , Kenya , Male
6.
Malar J ; 2: 15, 2003 Jun 18.
Article in English | MEDLINE | ID: mdl-12875660

ABSTRACT

BACKGROUND: Malaria can be eradicated from islands. To assess the prospects for eradication of malaria from the island of Príncipe in the Gulf of Guinea, we fitted a mathematical model to age-prevalence curves and thus obtained estimates of the vectorial capacity and of the basic reproductive number (R0) for malaria. METHODS: A cross-sectional malariological survey was carried out, in mid-1999, in six communities, comprising circa 17% of the total 6,000 population of the island. All houses in these communities were registered and their mode of construction recorded. Thick and thin blood films were prepared from all consenting individuals. Each individual was asked whether they possessed a mosquito net, whether they had slept under a mosquito net the previous night, whether they were allergic to chloroquine, and whether they had visited the main island of São Tomé since the beginning of the year. Outpatient records from March 1999 until the end of December 2000 were also examined and the age and place of residence of diagnosed cases noted. RESULTS: 203 (19.8%) of the 1,026 individuals examined were found to be infected with Plasmodium falciparum. By fitting the mathematical model of the Garki project to the age-prevalence curve we estimate that the basic reproductive number, R0, on the island is approximately 1.6. Over a period of one year, a total of 1,792 P. falciparum cases reported to an outpatient facility at the island's hospital. Overall, 54% of the people interviewed slept under mosquito nets and were at reduced risk of infection. Conversely, people living in houses with openings between the top of the wall and the roof had higher risk of infection. CONCLUSION: This high incidence suggests that most of the malaria cases on the island attend the hospital and that treatment of these cases is an important factor reducing the effective rate of transmission. Providing that clinical cases are effectively treated, endemic malaria can probably be eliminated from the island mainly by reducing exposure to the vector with simple measures such as insecticide-treated nets and mosquito-proofing of dwellings. In contrast to traditional malaria eradication strategies, this would avoid the risk of malaria epidemics because the reduction in R0 should be sustainable.


Subject(s)
Malaria/prevention & control , Adolescent , Adult , Age Distribution , Aged , Aged, 80 and over , Animals , Atlantic Islands/epidemiology , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Infant , Insect Control , Insect Vectors , Malaria/epidemiology , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Male , Middle Aged , Plasmodium falciparum/isolation & purification , Pregnancy
7.
J Infect Dis ; 185(5): 618-26, 2002 Mar 01.
Article in English | MEDLINE | ID: mdl-11865418

ABSTRACT

After an epidemic of serogroup A meningococcal meningitis in northern Ghana, a gradual disappearance of the epidemic strain was observed in a series of five 6-month carriage surveys of 37 randomly selected households. As serogroup A Neisseria meningitidis carriage decreased, an epidemic of serogroup X meningococcal carriage occurred, which reached 18% (53/298) of the people sampled during the dry season of 2000, coinciding with an outbreak of serogroup X disease. These carriage patterns were unrelated to that of Neisseria lactamica. Multilocus sequence typing and pulsed-field gel electrophoresis of the serogroup X bacteria revealed strong similarity with other strains isolated in Africa during recent decades. Three closely related clusters with distinct patterns of spread were identified among the Ghanian isolates, and further microevolution occurred after they arrived in the district. The occurrence of serogroup X outbreaks argues for the inclusion of this serogroup into a multivalent conjugate vaccine against N. meningitidis.


Subject(s)
Disease Outbreaks , Meningitis, Meningococcal/epidemiology , Neisseria meningitidis/classification , Adolescent , Adult , Carrier State/epidemiology , Carrier State/microbiology , Child , Child, Preschool , Female , Ghana/epidemiology , Humans , Incidence , Male , Meningitis, Meningococcal/microbiology , Neisseria meningitidis/genetics , Prevalence , Prospective Studies , Serotyping
SELECTION OF CITATIONS
SEARCH DETAIL
...