Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Mol Biosci ; 9: 1008921, 2022.
Article in English | MEDLINE | ID: mdl-36275625

ABSTRACT

The regulation of mRNA translation plays an essential role in neurons, contributing to important brain functions, such as brain plasticity and memory formation. Translation is conducted by ribosomes, which at their core consist of ribosomal proteins (RPs) and ribosomal RNAs. While translation can be regulated at diverse levels through global or mRNA-specific means, recent evidence suggests that ribosomes with distinct configurations are involved in the translation of different subsets of mRNAs. However, whether and how such proclaimed ribosome heterogeneity could be connected to neuronal functions remains largely unresolved. Here, we postulate that the existence of heterologous ribosomes within neurons, especially at discrete synapses, subserve brain plasticity. This hypothesis is supported by recent studies in rodents showing that heterogeneous RP expression occurs in dendrites, the compartment of neurons where synapses are made. We further propose that sleep, which is fundamental for brain plasticity and memory formation, has a particular role in the formation of heterologous ribosomes, specialised in the translation of mRNAs specific for synaptic plasticity. This aspect of our hypothesis is supported by recent studies showing increased translation and changes in RP expression during sleep after learning. Thus, certain RPs are regulated by sleep, and could support different sleep functions, in particular brain plasticity. Future experiments investigating cell-specific heterogeneity in RPs across the sleep-wake cycle and in response to different behaviour would help address this question.

2.
Nat Nanotechnol ; 17(3): 301-309, 2022 03.
Article in English | MEDLINE | ID: mdl-34937934

ABSTRACT

Mapping the entire frequency bandwidth of brain electrophysiological signals is of paramount importance for understanding physiological and pathological states. The ability to record simultaneously DC-shifts, infraslow oscillations (<0.1 Hz), typical local field potentials (0.1-80 Hz) and higher frequencies (80-600 Hz) using the same recording site would particularly benefit preclinical epilepsy research and could provide clinical biomarkers for improved seizure onset zone delineation. However, commonly used metal microelectrode technology suffers from instabilities that hamper the high fidelity of DC-coupled recordings, which are needed to access signals of very low frequency. In this study we used flexible graphene depth neural probes (gDNPs), consisting of a linear array of graphene microtransistors, to concurrently record DC-shifts and high-frequency neuronal activity in awake rodents. We show here that gDNPs can reliably record and map with high spatial resolution seizures, pre-ictal DC-shifts and seizure-associated spreading depolarizations together with higher frequencies through the cortical laminae to the hippocampus in a mouse model of chemically induced seizures. Moreover, we demonstrate the functionality of chronically implanted devices over 10 weeks by recording with high fidelity spontaneous spike-wave discharges and associated infraslow oscillations in a rat model of absence epilepsy. Altogether, our work highlights the suitability of this technology for in vivo electrophysiology research, and in particular epilepsy research, by allowing stable and chronic DC-coupled recordings.


Subject(s)
Epilepsy , Graphite , Animals , Electroencephalography , Mice , Microelectrodes , Rats , Seizures
3.
J Neural Eng ; 18(5)2021 04 06.
Article in English | MEDLINE | ID: mdl-33690187

ABSTRACT

Objective.The development of experimental methodology utilizing graphene micro-transistor arrays to facilitate and advance translational research into cortical spreading depression (CSD) in the awake brain.Approach.CSDs were reliably induced in awake nontransgenic mice using optogenetic methods. High-fidelity DC-coupled electrophysiological mapping of propagating CSDs was obtained using flexible arrays of graphene soultion-gated field-effect transistors (gSGFETs).Main results.Viral vectors targetted channelrhopsin expression in neurons of the motor cortex resulting in a transduction volume ⩾1 mm3. 5-10 s of continous blue light stimulation induced CSD that propagated across the cortex at a velocity of 3.0 ± 0.1 mm min-1. Graphene micro-transistor arrays enabled high-density mapping of infraslow activity correlated with neuronal activity suppression across multiple frequency bands during both CSD initiation and propagation. Localized differences in the CSD waveform could be detected and categorized into distinct clusters demonstrating the spatial resolution advantages of DC-coupled recordings. We exploited the reliable and repeatable induction of CSDs using this preparation to perform proof-of-principle pharmacological interrogation studies using NMDA antagonists. MK801 (3 mg kg-1) suppressed CSD induction and propagation, an effect mirrored, albeit transiently, by ketamine (15 mg kg-1), thus demonstrating this models' applicability as a preclinical drug screening platform. Finally, we report that CSDs could be detected through the skull using graphene micro-transistors, highlighting additional advantages and future applications of this technology.Significance.CSD is thought to contribute to the pathophysiology of several neurological diseases. CSD research will benefit from technological advances that permit high density electrophysiological mapping of the CSD waveform and propagation across the cortex. We report anin vivoassay that permits minimally invasive optogenetic induction, combined with multichannel DC-coupled recordings enabled by gSGFETs in the awake brain. Adoption of this technological approach could facilitate and transform preclinical investigations of CSD in disease relevant models.


Subject(s)
Cortical Spreading Depression , Graphite , Animals , Brain , Cerebral Cortex , Mice , Wakefulness
4.
J Neurosci Methods ; 330: 108479, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31705935

ABSTRACT

BACKGROUND: Using in and ex vivo preparations, electrophysiological methods help understand the excitability of biological tissue, particularly neurons, by providing microsecond temporal resolution. However, for in vivo recordings, in the context of extracellular recordings, it is often unclear precisely which type of neuron the tip of the electrode is recording from. This is particularly true in the densely-populated central nervous system, such as the spinal cord dorsal horn at both superficial and deep levels. NEW METHOD: Here, we present a detailed protocol for the identification of superficial dorsal horn spinal cord neurons that receive peripheral input and project to the brain, using multiple surgical laminectomies and the careful placement of electrodes. Once a superficial projection unit was found, quantification to electrical peripheral stimulation was performed using a Matlab algorithm to form a template of projection neuron response to controlled C2 stimulation and accurately match this to the responses from peripheral stimulation. RESULTS: These superficial spinal projection neurons are normally activated by noxious peripheral stimuli, so we adopted a well-characterised wind-up protocol to obtain a neuronal excitability profile. Once achieved, this protocol allows for testing specific interventions, either pharmacological or neuromodulatory (e.g., spinal cord stimulation) to see how these affect the neuron's excitability. This preparation is robust and allows the accurate tracking of a projection neuron for over 3-h. COMPARISON WITH EXISTING METHOD(S): Currently, most existing methods record from dorsal horn neurons that are often profiled based on their excitability to different peripherally-applied sensory modalities. While this is well-established, it fails to discriminate between interneurons and projection neurons, which is important as these two populations signal via distinctly different neuronal networks. Using the approach detailed here will result in studies with improved mechanistic understanding of the signal integration and processing that occurs in the superficial dorsal horn. CONCLUSIONS: The refinements detailed in this protocol allow for more comprehensive studies to be carried out that will help understand spinal plasticity, in addition to many considerations for isolating the relevant neuronal population when performing in vivo electrophysiology.


Subject(s)
Action Potentials/physiology , Algorithms , Neurons/physiology , Neurosciences/methods , Spinal Cord Dorsal Horn/physiology , Spinal Cord Stimulation , Animals , Female , Male , Rats , Rats, Wistar
5.
J Neurosci Methods ; 327: 108322, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31419473

ABSTRACT

BACKGROUND: In mammals, fast neural Electrical Impedance Tomography (EIT) can image the myelinated component of the compound action potentials (CAP) using a nerve cuff. If applied to unmyelinated fibres this has great potential to improve selective neuromodulation ("electroceuticals") to avoid off-target effects. Previously, bioimpedance recordings were averaged from unmyelinated crab leg nerve fibres, but the signal to noise ratio (SNR) needs improving. NEW METHOD: Currently, functional non-invasive neuronal imaging is accomplished through surface electrodes or genetically expressed indicators that provide good spatial, but poor temporal, resolution. Here is an improved method for bioimpedance measurements from a model of unmyelinated fibres to enable optimisation through improvement of the 1) signal processing measurement paradigm, 2) neurophysiology, and 3) electrode-nerve interface. RESULTS: For bioimpedance recordings, the recruitment and necessity of the CAP was quantified and saline significantly improved the SNR. An improved protocol resulted in averaging not being required, as sequentially recorded traces produced bioimpedance changes of -0.232 ± 0.064% that did not show phase or timing related artefacts. COMPARISON WITH EXISTING METHOD: Here, two bioimpedance traces displayed an SNR of ≥3:1, while previously over >100 averages were required with greater inter-experimental variability. 10 paired traces were averaged for an SNR of ≥9:1, or near real-time measurement. CONCLUSIONS: This method facilitates further studies aiming to enable non-invasive localization of fascicular activity in unmyelinated fibres within peripheral nerves. This technique could ultimately produce the first 3-D tomographic images to help guide selective neuromodulation using bioelectric devices.


Subject(s)
Electric Impedance , Nerve Fibers, Unmyelinated/physiology , Neurophysiology/methods , Peripheral Nerves/physiology , Action Potentials/physiology , Animals , Anomura
6.
Nat Neurosci ; 18(12): 1746-55, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26551542

ABSTRACT

Neuropathic pain is a debilitating clinical problem and difficult to treat. Nerve injury causes a long-lasting reduction in K(+) channel expression in the dorsal root ganglion (DRG), but little is known about the epigenetic mechanisms involved. We found that nerve injury increased dimethylation of Lys9 on histone H3 (H3K9me2) at Kcna4, Kcnd2, Kcnq2 and Kcnma1 promoters but did not affect levels of DNA methylation on these genes in DRGs. Nerve injury increased activity of euchromatic histone-lysine N-methyltransferase-2 (G9a), histone deacetylases and enhancer of zeste homolog-2 (EZH2), but only G9a inhibition consistently restored K(+) channel expression. Selective knockout of the gene encoding G9a in DRG neurons completely blocked K(+) channel silencing and chronic pain development after nerve injury. Remarkably, RNA sequencing analysis revealed that G9a inhibition not only reactivated 40 of 42 silenced genes associated with K(+) channels but also normalized 638 genes down- or upregulated by nerve injury. Thus G9a has a dominant function in transcriptional repression of K(+) channels and in acute-to-chronic pain transition after nerve injury.


Subject(s)
Acute Pain/genetics , Chronic Pain/genetics , Epigenesis, Genetic/genetics , Gene Silencing/physiology , Histone-Lysine N-Methyltransferase/genetics , Potassium Channels/genetics , Acute Pain/pathology , Animals , Chronic Pain/pathology , Disease Progression , Female , Histone-Lysine N-Methyltransferase/deficiency , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Potassium Channels/deficiency , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...