Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrason Sonochem ; 100: 106625, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37801993

ABSTRACT

Ultrasonic dental scalers are indispensable instruments for efficient dental cleaning through the generation of cavitation. To gain valuable insights and enhance the cavitation cleaning effects, a numerical investigation is conducted using the finite element method via ABAQUS. Numerical results are compared with the experimental cavitation image for a scaler undergoes vibrations near a wall. We then analyse how the amplitude, frequency, and cross-sectional shape of the scaler affect cavitation generation. Numerical results indicate that cavitation is more pronounced for a scaler oscillating near a nearly rigid boundary than a soft boundary. It increases with the vibration amplitude because of higher ultrasonic energy transferring to the liquid and generating stronger pressure waves. The resonant frequency of the scaler coincides with the maximum cavitation and scaler tip amplitude. Reducing the dimension of the cross-section of the scaler in its oscillation direction increases both the scaler tip amplitude and the cavitation generated. This finding offers a potential design approach for enhancing the scaler cavitation and its cleaning effects. These insights provide practical guidance for optimising dental scaler settings, which can improve oral hygiene and prevent complications related to dental implants.


Subject(s)
Ultrasonic Therapy , Ultrasonics , Humans , Periodontal Pocket , Ultrasonics/methods , Vibration , Energy Transfer
2.
Ultrason Sonochem ; 90: 106178, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36194949

ABSTRACT

Periodontal pockets are spaces or holes surrounded by teeth under the gum line. These pockets can become filled with infection-causing bacteria resulting in tissue, bone, and tooth loss. Cavitation produced by the oscillating tip of dental ultrasonic scalers plays a significant role in routine periodontal therapy to clean these areas. Numerical studies were conducted for a scaler vibrating in a periodontal pocket which was simplified to a hole, using ABAQUS based on the finite element method. The simulations consider the three-dimensional, nonlinear, and transient interaction between the vibration and deformation of the scaler tip, the water flow around the scaler and the cavitation formation. The numerical model was validated by comparing results with experimental data for a scaler vibrating in an unbounded liquid, the displacement at the free end of the scaler and the cavitation pattern near the scaler tip displaying excellent agreement. A parametric study for a scaler vibrating in a hole has been carried out in terms of the volume of the hole, the taper ratio (the radius ratio between the circular opening and bottom of the hole), and the immersion depth of the scaler tip in the hole. The amount of cavitation generated is evaluated by the cavitation density (or the void fraction) which is the ratio of the volume of the cavitation occupied in the hole to the total volume of the hole. Numerical results indicate that the cavitation density in the hole increases with the decreasing hole volume and the increasing taper ratio. It is inferred that cleaning effects could be increased if some modifications to the scaler design could be made to increase the blocking effect of the hole during the cleaning process. Cavitation is observed in the hole even if the scaler is placed above the hole and increases with the immersion depth.


Subject(s)
Ultrasonics , Vibration , Humans , Periodontal Pocket , Ultrasonics/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...