Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Asian J ; 15(19): 3059-3081, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32749069

ABSTRACT

Syntheses of a range of chemically well-defined oligopyrrole/benzenoid hybrids are described using tandem Suzuki-Miyaura cross-coupling/bromo-desilyation reaction sequences for linking borylated pyrroles, halogenated pyrroles and/or dibromobenzenes to one another. By such means, including iterative variants, a range of all α-linked, all ß-linked oligopyrroles as well as certain combinations thereof have been assembled, some of them for the first time. The conductivities of iodine-treated thin films formed from certain such systems have been determined.

2.
J Hazard Mater ; 283: 164-70, 2015.
Article in English | MEDLINE | ID: mdl-25262487

ABSTRACT

In this paper, we demonstrate conducting polypyrrole films as a potential green technology for electrochemical treatment of azo dyes in wastewaters using Acid Red 1 as a model analyte. These films were synthesised by anodically polymerising pyrrole in the presence of Acid Red 1 as a supporting electrolyte. In this way, the anionic Acid Red 1 is electrostatically attracted to the cationic polypyrrole backbone formed to maintain electroneutrality, and is thus entrapped in the film. These Acid Red 1-entrapped polypyrrole films were characterised by electrochemical, microscopic and spectroscopic techniques. Based on a two-level factorial design, the solution pH, Acid Red 1 concentration and polymerisation duration were identified as significant parameters affecting the entrapment efficiency. The entrapment process will potentially aid in decolourising Acid Red 1-containing wastewaters. Similarly, in a cathodic process, electrons are supplied to neutralise the polypyrrole backbone, liberating Acid Red 1 into a solution. In this work, following an entrapment duration of 480 min in 2000 mg L(-1) Acid Red 1, we estimated 21% of the dye was liberated after a reduction period of 240 min. This allows the recovery of Acid Red 1 for recycling purposes. A distinctive advantage of this electrochemical Acid Red 1 treatment, compared to many other techniques, is that no known toxic by-products are generated in the treatment. Therefore, conducting polypyrrole films can potentially be applied as an environmentally friendly treatment method for textile effluents.


Subject(s)
Azo Compounds/analysis , Industrial Waste , Polymers/chemistry , Pyrroles/chemistry , Textiles , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Azo Compounds/chemistry , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...