Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Biochemistry ; 51(30): 6017-27, 2012 Jul 31.
Article in English | MEDLINE | ID: mdl-22769726

ABSTRACT

To more fully understand the molecular mechanisms responsible for variations in binding affinity with antibody maturation, we explored the use of site specific fluorine labeling and (19)F nuclear magnetic resonance (NMR). Several single-chain (scFv) antibodies, derived from an affinity-matured series of anti-hen egg white lysozyme (HEL) mouse IgG1, were constructed with either complete or individual replacement of tryptophan residues with 5-fluorotryptophan ((5F)W). An array of biophysical techniques was used to gain insight into the impact of fluorine substitution on the overall protein structure and antigen binding. SPR measurements indicated that (5F)W incorporation lowered binding affinity for the HEL antigen. The degree of analogue impact was residue-dependent, and the greatest decrease in affinity was observed when (5F)W was substituted for residues near the binding interface. In contrast, corresponding crystal structures in complex with HEL were essentially indistinguishable from the unsubstituted antibody. (19)F NMR analysis showed severe overlap of signals in the free fluorinated protein that was resolved upon binding to antigen, suggesting very distinct chemical environments for each (5F)W in the complex. Preliminary relaxation analysis suggested the presence of chemical exchange in the antibody-antigen complex that could not be observed by X-ray crystallography. These data demonstrate that fluorine NMR can be an extremely useful tool for discerning structural changes in scFv antibody-antigen complexes with altered function that may not be discernible by other biophysical techniques.


Subject(s)
Antibodies, Monoclonal/chemistry , Antigens/metabolism , Fluorine/metabolism , Muramidase/chemistry , Animals , Antibodies, Monoclonal/metabolism , Antigens/chemistry , Binding Sites, Antibody , Crystallography, X-Ray/methods , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism , Isotope Labeling/methods , Mice , Molecular Dynamics Simulation , Muramidase/immunology , Muramidase/metabolism , Nuclear Magnetic Resonance, Biomolecular/methods , Protein Binding/immunology , Protein Structure, Secondary , Protein Structure, Tertiary
3.
Mol Immunol ; 47(2-3): 457-64, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19781789

ABSTRACT

Thermodynamic and structural studies addressed the increased affinity due to L-chain somatic mutations in the HyHEL-10 family of affinity matured IgG antibodies, using ITC, SPR with van't Hoff analysis, and X-ray crystallography. When compared to the parental antibody H26L26, the H26L10 and H26L8 chimeras binding to lysozyme showed an increase in favorable DeltaG(o) of -1.2+/-0.1 kcal mol(-1) and -1.3+/-0.1 kcal mol(-1), respectively. Increase in affinity of the H26L10 chimera was due to a net increase in favorable enthalpy change with little difference in change in entropy compared to H26L26. The H26L8 chimera exhibited the greatest increase in favorable enthalpy but also showed an increase in unfavorable entropy change, with the result being that the affinities of both chimeras were essentially equivalent. Site-directed L-chain mutants identified the shared somatic mutation S30G as the dominant contributor to increasing affinity to lysozyme. This mutation was not influenced by H-chain somatic mutations. Residue 30L is at the periphery of the binding interface and S30G effects an increase in hydrophobicity and decrease in H-bonding ability and size, but does not make any new energetically important antigen contacts. A new 1.2-A structure of the H10L10-HEL complex showed changes in the pattern of both inter- and intra-molecular water bridging with no other significant structural alterations near the binding interface compared to the H26L26-HEL complex. These results highlight the necessity for investigating both the structure and the thermodynamics associated with introduced mutations, in order to better assess and understand their impact on binding. Furthermore, it provides an important example of how backbone flexibility and water-bridging may favorably influence the thermodynamics of an antibody-antigen interaction.


Subject(s)
Antibodies/chemistry , Antibodies/genetics , Immunoglobulin Light Chains/genetics , Mutation/genetics , Water/chemistry , Antibodies/immunology , Calorimetry , Crystallography, X-Ray , Glycine/chemistry , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/genetics , Models, Molecular , Muramidase/chemistry , Muramidase/immunology , Pliability , Protein Structure, Secondary , Thermodynamics
4.
Biochemistry ; 48(6): 1390-8, 2009 Feb 17.
Article in English | MEDLINE | ID: mdl-19166328

ABSTRACT

HyHEL-8, HyHEL-10, and HyHEL-26 (HH8, HH10, and HH26, respectively) are murine monoclonal IgG(1) antibodies which share over 90% variable-region amino acid sequence identity and recognize identical structurally characterized epitopes on hen egg white lysozyme (HEL). Previous immunochemical and surface plasmon resonance-based studies have shown that these antibodies differ widely in their tolerance of mutations in the epitope. While HH8 is the most cross-reactive, HH26 is rigidified by a more extensive network of intramolecular salt links and is highly specific, with both association and dissociation rates strongly affected by epitope mutations. HH10 is of intermediate specificity, and epitope mutations produce changes primarily in the dissociation rate. Calorimetric characterization of the association energetics of these three antibodies with the native antigen HEL and with Japanese quail egg white lysozyme (JQL), a naturally occurring avian variant, shows that the energetics of interaction correlate with cross-reactivity and specificity. These results suggest that the greater cross-reactivity of HH8 may be mediated by a combination of conformational flexibility and less specific intermolecular interactions. Thermodynamic calculations suggest that upon association HH8 incurs the largest configurational entropic penalty and also the smallest loss of enthalpic driving force with variant antigen. Much smaller structural perturbations are expected in the formation of the less flexible HH26 complex, and the large loss of enthalpic driving force observed with variant antigen reflects its specificity. The observed thermodynamic parameters correlate well with the observed functional behavior of the antibodies and illustrate fundamental differences in thermodynamic characteristics between cross-reactive and specific molecular recognition.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibody Specificity/immunology , Cross Reactions/immunology , Animals , Calorimetry , Chickens , Coturnix , Muramidase/immunology , Mutation/genetics , Protein Structure, Secondary , Quail , Thermodynamics
5.
J Mol Recognit ; 21(2): 114-21, 2008.
Article in English | MEDLINE | ID: mdl-18383102

ABSTRACT

The kinetics of dissociation of three structurally characterized anti-hen egg white lysozyme antibodies (H8, H10, and H26), with hen egg white lysozyme (HEL) and the avian variant Japanese quail lysozyme (JQL) were examined. These antibodies share over 90% sequence identity and recognize the same epitope, but differ in their degree of cross-reactivity and predicted combining site rigidity. Competitive dissociation induced by the addition of excess unlabeled HEL after varied periods of antibody-antigen association was followed in real time using fluorescence anisotropy. Dissociation was in many cases non-single-exponential, and the observed off-rates became slower as the complex age increased, suggesting multi-step association kinetics consistent with an encounter-docking view of protein-protein interactions. The fully docked fraction of the complexes just prior to inducing dissociation was high for the HEL complexes but was dramatically reduced for JQL complexes, that is final docking was antigen-sensitive. Variations among the systems can be understood in terms of the complexes' differing conformational flexibilities, based on the encounter-docking model of protein-protein associations.


Subject(s)
Antigen-Antibody Complex/chemistry , Animals , Anisotropy , Antibodies/chemistry , Antigens/chemistry , Chickens , Coturnix , Kinetics , Muramidase/chemistry , Mutant Proteins/chemistry , Protein Conformation , Quail
6.
Cell Biochem Biophys ; 47(3): 361-75, 2007.
Article in English | MEDLINE | ID: mdl-17652781

ABSTRACT

1 NSec molecular dynamics (MD) simulation of anti-hen egg white antibody, HyHEL63 (HH63), complexed with HEL reveals important molecular interactions, not revealed in its X-ray crystal structure. These molecular interactions were predicted to be critical for the complex formation, based on structure-function studies of this complex and 3-other anti-HEL antibodies, HH8, HH10 and HH26, HEL complexes. All four antibodies belong to the same structural family, referred to here as HH10 family. Ala scanning results show that they recognize 'coincident epitopes'. 1 NSec explicit, with periodic boundary condition, MD simulation of HH63- HEL reveals the presence of functionally important saltbridges. Around 200 ps in vacuo and an additional 20 ps explicit simulation agree with the observations from 1 Nsec simulation. Intra-molecular salt-bridges predicted to play significant roles in the complex formation, were revealed during MD simulation. A very stabilizing saltbridge network, and another intra-molecular salt-bridge, at the binding site of HEL, revealed during the MD simulation, is proposed to predipose binding site geometry for specific binding. All the revealed saltbridges are present in one or more of the other three complexes and/or involve \"hot-spot\" epitope and paratope residues. Most of these charged epitope residues make large contribution to the binding free energy. The "hot spot" epitope residue Lys97Y, which significantly contributes to the free energy of binding in all the complexes, forms an intermolecular salt-bridge in several MD conformers. Our earlier computations have shown that this inter-molecular salt-bridge plays a significant role in determining specificity and flexibility of binding in the HH8-HEL and HH26-HEL complexes. Using a robust criterion of salt-bridge detection, this intermolecular salt-bridge was detected in the native structures of the HH8-HEL and HH26-HEL complexes, but was not revealed in the crystal structure of HH63-HEL complex. The electrostatic strength of this revealed saltbridge was very strong. During 1 Nsec MD simulation this salt-bridge networks with another inter-molecular salt-bridge to form an inter-molecular salt-bridge triad. Participation of Lys97Y in the formation of inter-molecular triad further validates the functional importance of Lys97Y in HH63-HEL associations. These results demonstrate that many important structural details of biomolecular interactions can be better understood when studied in a dynamic environment, and that MD simulations can complement and expand information obtained from static X-ray structure. This study also highlights "hot-spot" molecular interactions in HyHEL63-HEL complex.


Subject(s)
Antibodies/chemistry , Antigen-Antibody Complex/chemistry , Antigens/chemistry , Models, Chemical , Models, Immunological , Models, Molecular , Salts/chemistry , Antibodies/immunology , Antigen-Antibody Complex/immunology , Antigens/immunology , Binding Sites , Computer Simulation , Protein Binding
7.
Cell Biochem Biophys ; 43(2): 253-73, 2005.
Article in English | MEDLINE | ID: mdl-16049350

ABSTRACT

One nanosecond molecular dynamic (MD) simulation of anti-hen egg white lysozyme (HEL) antibody HyHEL63 (HH63) complexed with HEL reveals rigid and flexible regions of the HH63 binding site. Fifty conformations, extracted from the MD trajectory at regular time intervals were superimposed on HH63-HEL X-ray crystal structure, and the root mean squared deviations (RMSDs) and deviations in Calpha atom positions between the X-ray structure and the MD conformer were measured. Residue positions showing the large deviations in both light chain and heavy chain of the antibody were same in all the MD conformers. The residue positions showing smallest deviations were same for all the conformers in the case of light chain, whereas relatively variable in the heavy chain. Positions of large and small deviations fell in the complementarity determining regions (CDRs), for both heavy and light chains. The larger deviations were in CDR-2 of light and CDR-1 of heavy chain. Smaller deviations were in CDR-3 of light and CDR-2 and CDR-3 of heavy chains. The large and small deviating regions highlight flexible and rigid regions of HH63 binding site and suggest a mosaic binding mechanism, including both "induced fit" and preconfigured "lock-and-key" type of binding. Combined "induced fit" and "lock-and-key" binding would be a better definition for the formation of large complexes, which bury larger surface area on binding, as in the case of antibody-HEL complex. We further show that flexible regions, comprising mostly charged and polar residues, form intermolecular interactions with HEL, whereas rigid regions do not. Electrostatic complementarity between HH63 and HEL also imply optimized binding affinity. Flexible and rigid regions of a high-affinity antibody are selected during the affinity maturation of the antibody and have specific functional significance. The functional importance of local inherently flexible regions is to establish intermolecular contacts or they play a key role in molecular recognition, whereas local rigid regions provide the structural framework.


Subject(s)
Antibodies/chemistry , Antigen-Antibody Complex/chemistry , Models, Chemical , Models, Molecular , Muramidase/chemistry , Antibodies/immunology , Antigen-Antibody Complex/analysis , Antigen-Antibody Complex/immunology , Computer Simulation , Elasticity , Models, Biological , Motion , Muramidase/analysis , Muramidase/immunology , Protein Binding , Protein Conformation , Structure-Activity Relationship
8.
Structure ; 13(2): 297-307, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15698573

ABSTRACT

Hydrophobic interactions are essential for stabilizing protein-protein complexes, whose interfaces generally consist of a central cluster of hot spot residues surrounded by less important peripheral residues. According to the O-ring hypothesis, a condition for high affinity binding is solvent exclusion from interacting residues. This hypothesis predicts that the hydrophobicity at the center is significantly greater than at the periphery, which we estimated at 21 cal mol(-1) A(-2). To measure the hydrophobicity at the center, structures of an antigen-antibody complex where a buried phenylalanine was replaced by smaller hydrophobic residues were determined. By correlating structural changes with binding free energies, we estimate the hydrophobicity at this central site to be 46 cal mol(-1) A(-2), twice that at the periphery. This context dependence of the hydrophobic effect explains the clustering of hot spots at interface centers and has implications for hot spot prediction and the design of small molecule inhibitors.


Subject(s)
Multiprotein Complexes/chemistry , Animals , Antibodies/chemistry , Antibodies/genetics , Antibodies/immunology , Antigen-Antibody Complex/chemistry , Binding Sites, Antibody , Drug Design , Hydrophobic and Hydrophilic Interactions , Muramidase/chemistry , Muramidase/immunology , Mutation/genetics , Phenylalanine/chemistry , Protein Binding , Protein Conformation
9.
Biophys J ; 87(3): 1981-90, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15345574

ABSTRACT

We present a method for simultaneously recording topography images and localizing specific binding sites with nm positional accuracy by combining dynamic force microscopy with single molecule recognition force spectroscopy. For this we used lysozyme adsorbed to mica, the functionality of which was characterized by enzyme immunoassays. The topography and recognition images were acquired using tips that were magnetically oscillated during scanning and contained antibodies directed against lysozyme. For cantilevers with low Q-factor (approximately 1 in liquid) driven at frequencies below resonance, the surface contact only affected the downward deflections (minima) of the oscillations, whereas binding of the antibody on the tip to lysozyme on the surface only affected the upwards deflections (maxima) of the oscillations. The recognition signals were therefore well separated from the topographic signals, both in space (Delta z approximately 5 nm) and time (approximately 0.1 ms). Topography and recognition images were simultaneously recorded using a specially designed electronic circuit with which the maxima (U(up)) and the minima (U(down)) of each sinusoidal cantilever deflection period were depicted. U(down) was used for driving the feedback loop to record the height (topography) image, and U(up) provided the data for the recognition image.


Subject(s)
Microscopy, Atomic Force/instrumentation , Microscopy, Atomic Force/methods , Muramidase/chemistry , Aluminum Silicates/chemistry , Animals , Antibodies/chemistry , Antigen-Antibody Reactions , Calibration , Image Processing, Computer-Assisted , Immunoenzyme Techniques , Muramidase/ultrastructure , Oscillometry , Software , Surface Properties , Time Factors
10.
Biophys J ; 85(5): 3221-36, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14581222

ABSTRACT

Three antibodies, HyHEL-8 (HH8), HyHEL-10 (HH10), and HyHEL-26 (HH26) are specific for the same epitope on hen egg white lysozyme (HEL), and share >90% sequence homology. Their affinities vary by several orders of magnitude, and among the three antibodies, HH8 is the most cross-reactive with kinetics of binding that are relatively invariable compared to HH26, which is highly specific and has quite variable kinetics. To investigate structural correlates of these functional variations, the Fv regions of HH8 and HH26 were homology-modeled using the x-ray structure of the well-characterized HH10-HEL complex as template. The binding site of HH26 is most charged, least hydrophobic, and has the greatest number of intramolecular salt bridges, whereas that of HH8 is the least charged, most hydrophobic and has the fewest intramolecular salt bridges. The modeled HH26-HEL structure predicts the recently determined x-ray structure of HH26, (Li et al., 2003, Nat. Struct. Biol. 10:482-488) with a root-mean-square deviation of 1.03 A. It is likely that the binding site of HH26 is rendered rigid by a network of intramolecular salt bridges whereas that of HH8 is flexible due to their absence. HH26 also has the most intermolecular contacts with the antigen whereas HH8 has the least. HH10 has these properties intermediate to HH8 and HH26. The structurally rigid binding site with numerous specific contacts bestows specificity on HH26 whereas the flexible binding site with correspondingly fewer contacts enables HH8 to be cross-reactive. Results suggest that affinity maturation may select for high affinity antibodies with either "lock-and-key" preconfigured binding sites, or "preconfigured flexibility" by modulating combining site flexibility.


Subject(s)
Antibodies/chemistry , Antibody Specificity , Antigen-Antibody Complex/chemistry , Models, Chemical , Models, Molecular , Muramidase/chemistry , Sequence Analysis, Protein/methods , Amino Acid Sequence , Animals , Antibodies/immunology , Antigen-Antibody Complex/immunology , Antigen-Antibody Reactions/immunology , Binding Sites, Antibody , Computer Simulation , Coturnix , Cross Reactions/immunology , Egg Proteins/chemistry , Egg Proteins/immunology , Epitopes/chemistry , Epitopes/immunology , Immunoglobulin Fragments/chemistry , Immunoglobulin Fragments/immunology , Macromolecular Substances , Models, Biological , Molecular Sequence Data , Muramidase/immunology , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Structure-Activity Relationship
11.
Nat Struct Biol ; 10(6): 482-8, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12740607

ABSTRACT

The process whereby the immune system generates antibodies of higher affinities during a response to antigen (affinity maturation) is a prototypical example of molecular evolution. Earlier studies have been confined to antibodies specific for small molecules (haptens) rather than for proteins. We compare the structures of four antibodies bound to the same site on hen egg white lysozyme (HEL) at different stages of affinity maturation. These X-ray snapshots reveal that binding is enhanced, not through the formation of additional hydrogen bonds or van der Waals contacts or by an increase in total buried surface, but by burial of increasing amounts of apolar surface at the expense of polar surface, accompanied by improved shape complementarity. The increase in hydrophobic interactions results from highly correlated rearrangements in antibody residues at the interface periphery, adjacent to the central energetic hot spot. This first visualization of the maturation of antibodies to protein provides insights into the evolution of high affinity in other protein-protein interfaces.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , Antigen-Antibody Complex/chemistry , Muramidase/immunology , Animals , Antigen-Antibody Complex/metabolism , Binding Sites/immunology , Chickens , Crystallography, X-Ray , Hydrogen Bonding , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/immunology , Immunoglobulin Light Chains/metabolism , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/immunology , Immunoglobulin Variable Region/metabolism , Immunoglobulins/genetics , Immunoglobulins/immunology , Mice , Models, Molecular , Molecular Sequence Data , Muramidase/chemistry , Muramidase/metabolism , Protein Conformation
12.
Biochemistry ; 42(1): 11-22, 2003 Jan 14.
Article in English | MEDLINE | ID: mdl-12515535

ABSTRACT

Alanine-scanning mutagenesis, X-ray crystallography, and double mutant cycles were used to characterize the interface between the anti-hen egg white lysozyme (HEL) antibody HyHEL-63 and HEL. Eleven HEL residues in contact with HyHEL-63 in the crystal structure of the antigen-antibody complex, and 10 HyHEL-63 residues in contact with HEL, were individually truncated to alanine in order to determine their relative contributions to complex stabilization. The residues of HEL (Tyr20, Lys96, and Lys97) most important for binding HyHEL-63 (Delta G(mutant) - Delta G(wild type) > 3.0 kcal/mol) form a contiguous patch at the center of the surface contacted by the antibody. Hot spot residues of the antibody (Delta Delta G > 2.0 kcal/mol) are organized in two clusters that juxtapose hot spot residues of HEL, resulting in energetic complementarity across the interface. All energetically critical residues are centrally located, shielded from solvent by peripheral residues that contribute significantly less to the binding free energy. Although HEL hot spot residues Lys96 and Lys97 make similar interactions with antibody in the HyHEL-63/HEL complex, alanine substitution of Lys96 results in a nearly 100-fold greater reduction in affinity than the corresponding mutation in Lys97. To understand the basis for this marked difference, we determined the crystal structures of the HyHEL-63/HEL Lys96Ala and HyHEL-63/HEL Lys97Ala complexes to 1.80 and 1.85 A resolution, respectively. Whereas conformational changes in the proteins and differences in the solvent networks at the mutation sites appear too small to explain the observed affinity difference, superposition of free HEL in different crystal forms onto bound HEL in the wild type and mutant HyHEL-63/HEL complexes reveals that the side-chain conformation of Lys96 is very similar in the various structures, but that the Lys97 side chain displays considerable flexibility. Accordingly, a greater entropic penalty may be associated with quenching the mobility of the Lys97 than the Lys96 side chain upon complex formation, reducing binding. To further dissect the energetics of specific interactions in the HyHEL-63/HEL interface, double mutant cycles were constructed to measure the coupling of 13 amino acid pairs, 11 of which are in direct contact in the crystal structure. A large coupling energy, 3.0 kcal/mol, was found between HEL residue Lys97 and HyHEL-63 residue V(H)Asp32, which form a buried salt bridge surrounded by polar residues of the antigen. Thus, in contrast to protein folding where buried salt bridges are generally destabilizing, salt bridges in protein-protein interfaces, whose residual composition is more hydrophilic than that of protein interiors, may contribute significantly to complex stabilization.


Subject(s)
Antibody Affinity , Antigens/chemistry , Binding Sites, Antibody , Immunoglobulin Fab Fragments/chemistry , Muramidase/chemistry , Alanine/genetics , Animals , Antibody Affinity/genetics , Antigens/genetics , Antigens/immunology , Antigens/metabolism , Binding Sites, Antibody/genetics , Chickens , Crystallography, X-Ray , Genetic Vectors/chemical synthesis , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/metabolism , Lysine/genetics , Macromolecular Substances , Muramidase/genetics , Muramidase/immunology , Muramidase/metabolism , Mutagenesis, Site-Directed , Peptide Mapping , Protein Binding/genetics , Protein Conformation , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Deletion , Thermodynamics
13.
Biophys J ; 83(6): 2946-68, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12496069

ABSTRACT

Antibodies HyHEL8, HyHEL10, and HyHEL26 (HH8, HH10, and HH26, respectively) recognize highly overlapping epitopes on hen egg-white lysozyme (HEL) with similar affinities, but with different specificities. HH8 binding to HEL is least sensitive toward mutations in the epitope and thus is most cross-reactive, HH26 is most sensitive, whereas the sensitivity of HH10 lies in between HH8 and HH26. Here we have investigated intra- and intermolecular interactions in three antibody-protein complexes: theoretical models of HH8-HEL and HH26-HEL complexes, and the x-ray crystal structure of HH10-HEL complex. Our results show that HH8-HEL has the lowest number and HH26-HEL has the highest number of intra- and intermolecular hydrogen bonds. The number of salt bridges is lowest in HH8-HEL and highest in HH26-HEL. The binding site salt bridges in HH8-HEL are not networked, and are weak, whereas, in HH26-HEL, an intramolecular salt-bridge triad at the binding site is networked to an intermolecular triad to form a pentad. The pentad and each salt bridge of this pentad are exceptionally stabilizing. The number of binding-site salt bridges and their strengths are intermediate in HH10-HEL, with an intramolecular triad. Our further calculations show that the electrostatic component contributes the most to binding energy of HH26-HEL, whereas the hydrophobic component contributes the most in the case of HH8-HEL. A "hot-spot" epitope residue Lys-97 forms an intermolecular salt bridge in HH8-HEL, and participates in the intermolecular pentad in the HH26-HEL complex. Mutant modeling and surface plasmon resonance (SPR) studies show that this hot-spot epitope residue contributes significantly more to the binding than an adjacent epitope residue, Lys-96, which does not form a salt bridge in any of the three HH-HEL complexes. Furthermore, the effect of mutating Lys-97 is most severe in HH26-HEL. Lys-96, being a charged residue, also contributes the most in HH26-HEL among the three complexes. The SPR results on these mutants also highlight that the apparent "electrostatic steering" on net on rates actually act at post-collision level stabilization of the complex. The significance of this work is the observed variations in electrostatic interactions among the three complexes. Our work demonstrates that higher electrostatics, both as a number of short-range electrostatic interactions and their contributions, leads to higher binding specificity. Strong salt bridges, their networking, and electrostatically driven binding, limit flexibilities through geometric constrains. In contrast, hydrophobic driven binding and low levels of electrostatic interactions are associated with conformational flexibility and cross-reactivity.


Subject(s)
Antibodies, Monoclonal/chemistry , Antigen-Antibody Complex/chemistry , Binding Sites, Antibody , Models, Molecular , Muramidase/chemistry , Animals , Antibody Specificity , Chickens , Computer Simulation , Cross Reactions , Crystallography , Electrochemistry/methods , Immunoglobulin Fragments/chemistry , Models, Chemical , Protein Conformation , Recombinant Proteins/chemistry , Salts/chemistry , Static Electricity , Surface Plasmon Resonance
14.
Curr Protein Pept Sci ; 3(6): 601-14, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12470214

ABSTRACT

Protein electrostatic properties stem from the proportion and distribution of polar and charged residues. Polar and charged residues regulate the electrostatic properties by forming short-range interactions, like salt-bridges and hydrogen-bonds, and by defining the over-all electrostatic environment in the protein. Electrostatics play a major role in defining the mechanisms of protein-protein complex formation, molecular recognitions, thermal stabilities, conformational adaptabilities and protein movements. For example:- Functional hinges, or flexible regions of the protein, lack short-range electrostatic interactions; Thermophilic proteins have higher electrostatic interactions than their mesophilic counter parts; Increase in binding specificity and affinity involve optimization of electrostatics; High affinity antibodies have higher, and stronger, electrostatic interactions with their antigens; Rigid parts of proteins have higher and stronger electrostatic interactions. In this review we address the significance of electrostatics in protein folding, binding and function. We discuss that the electrostatic properties are evolutionally selected by a protein to perform an specific function. We also provide bona fide examples to illustrate this. Additionally, using continuum electrostatic and molecular dynamics approaches we show that the "hot-spot" inter-molecular interactions in a very specific antibody-antigen binding are mainly established through charged residues. These "hot-spot" molecular interactions stay intact even during high temperature molecular dynamics simulations, while the other inter-molecular interactions, of lesser functional significance, disappear. This further corroborates the significance of charge-charge interactions in defining binding mechanisms. High affinity binding frequently involves "electrostatic steering". The forces emerge from over-all electrostatic complementarities and by the formation of charged and polar interactions. We demonstrate that although the high affinity binding of barnase-barstar and anti-hen egg white lysozyme (HEL) antibody-HEL complexes involve different molecular mechanisms, it is electrostatically regulated in both the cases. These observations, and several other studies, suggest that a fine tuning of local and global electrostatic properties are essential for protein binding and function.


Subject(s)
Proteins/chemistry , Proteins/metabolism , Hydrogen Bonding , Models, Molecular , Protein Binding , Protein Structure, Tertiary , Static Electricity , Structure-Activity Relationship , Substrate Specificity
15.
Protein Pept Lett ; 9(5): 367-77, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12370024

ABSTRACT

Protein folding, binding, catalytic activity and molecular recognition all involve molecular movements, with varying extents. The molecular movements are brought upon via flexible regions. Stemming from sequence, a fine tuning of electrostatic and hydrophobic properties of the protein fold determine flexible and rigid regions. Studies show flexible regions usually lack electrostatic interactions, such as salt-bridges and hydrogen-bonds, while the rigid regions often have larger number of such electrostatic interactions. Protein flexible regions are not simply an outcome of looser packing or instability, rather they are evolutionally selected. In this review article we highlight the significance of protein flexibilities in folding, binding and function, and their structural and thermodynamic determinants. Our electrostatic calculations and molecular dynamic simulations on an antibody-antigen complex further illustrate the importance of protein flexibilities in binding and function.


Subject(s)
Protein Conformation , Protein Folding , Antibody Affinity , Hydrophobic and Hydrophilic Interactions , Protein Binding/physiology , Static Electricity , Structure-Activity Relationship , Thermodynamics
16.
J Mol Recognit ; 15(1): 44-52, 2002.
Article in English | MEDLINE | ID: mdl-11870921

ABSTRACT

Using BIACORE SPR, we have examined the mechanism of temperature effects on the binding kinetics of two closely related antibody Fabs (H10 and H26) which recognize coincident epitopes on hen egg-white lysozyme (HEL), and whose association and dissociation kinetics are best described by the two-step conformational change model which we interpret as molecular encounter and docking. Time-course series data obtained at a series of six temperatures (6, 10, 15, 25, 30 and 37 degrees C) showed that temperature differentially affects the rate constants of the encounter and docking steps. Docking is more temperature-sensitive than the encounter step, and energetically less favorable at higher temperatures. At elevated temperatures, the time required for docking is longer and the apparent increase in off-rate reflects the greater proportion of the molecules failing to dock and remaining in the less stable encounter state. As a consequence, distribution of free energy change between the encounter and docking steps is altered. At physiological temperature (37 degrees C) the docking step of the H26 complex is energetically unfavorable and most complexes essentially do not dock. There is a significant decrease in total free energy change of the H26 complex at higher temperatures. Elevated temperature changes the rate-limiting step of H26--HEL association from the encounter to the docking step, but not that of H10--HEL. Our results indicate that the mechanism by which elevated temperature reduces the affinities of antigen--antibody complexes is to decrease the net docking rate, and/or stability of the docked complex; at higher temperatures, a smaller proportion of the complexes actually anneal to a more stable docked state. This mechanism may have broad applicability to other receptor--ligand complexes.


Subject(s)
Antigen-Antibody Complex , Immunoglobulin Fab Fragments/chemistry , Muramidase/chemistry , Epitopes/chemistry , Epitopes/immunology , Immunoglobulin Fab Fragments/immunology , Muramidase/immunology , Temperature , Thermodynamics
17.
18.
Dev Growth Differ ; 21(4): 291-301, 1979.
Article in English | MEDLINE | ID: mdl-37280909

ABSTRACT

The relationship of DNA synthesis and cellular turnover to biochemical differentiation during Ts-induced metamorphosis of R. pipiens liver was investigated. Rates of DNA synthesis were estimated by rates of 3H-thymidine incorporation into the acid-precipitable fractions, corrected for both precursor uptake into the acid-soluble pool, and for endogenous thymine pool size. During T3-induced metamorphosis, periods of DNA synthesis and fluctuations in DNA content preceded expression of biochemical differentiation as measured by the enzyme arginase, and fluctuations in synthesis rates preceded corresponding fluctuations in content. The earliest response to T3-, was a 50% decrease in liver DNA, followed by increases in thymidine incorporation at 16 hr, 2 days, and 5-8 days. The size of the endogenous thymine pool was not significantly altered by T3 These results indicate that both DNA synthesis and cellular turnover play a significant role in determining net DNA synthetic rates and content during metamorphosis. Expression of thyroxin-induced development of the tadpole liver appears to be associated with both proliferation and cellular death, and metamorphosis of the liver cannot be occurring in a "fixed population of cells."

19.
Dev Growth Differ ; 21(4): 281-290, 1979.
Article in English | MEDLINE | ID: mdl-37282032

ABSTRACT

The relationship of DNA synthesis and cellular turnover to biochemical differentiation during metamorphosis of R. pipiens liver was investigated. Average DNA/cell was constant at 11.6 pg/ nucleus through stage XXV; but increased during juvenile growth; during metamorphosis stages, changes in total DNA content must correspond to changes in cell number. Rates of DNA synthesis were estimated by rates of 3 H-thymidine incorporated into the acid-precipitable fractions, corrected for both precursor uptake into the acid-soluble pool, and for endogenous thymine pool size. DNA content increased steadily from premetamorphosis until late prometamorphosis; at preclimax stages XVIII and XX there were two successive decreases in DNA content of approximately 30%. Fluctuations in synthesis rates preceded corresponding fluctuations in content; DNA synthesis was maximal at stages XVI and XVIII, decreased nearly ten-fold at metamorphic climax, and then gradually rose again during late climax stages. The size of the endogenous thymine pool increased transitorily during spontaneous metamorphosis corresponding to a stage of maximal DNA synthesis. These results indicate that both DNA synthesis and cellular turnover play a significant role in determining net DNA synthesis rates and content during metamorphosis. Metamorphosis of the tadpole liver appears to be associated with both proliferation and cellular death, perhaps a replacement of "larval" by "adult" cells. Metamorphosis of the liver cannot be occuring in a "fixed population of cells" as is commonly assumed. An interpretation of the population dynamics of the metamorphic liver is presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...