Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
PLoS Med ; 20(11): e1004318, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38033155

ABSTRACT

BACKGROUND: Myanmar has a large majority of all malaria in the Greater Mekong Subregion. In the past decade, substantial progress was made in malaria control. The residual burden of malaria is in remote areas where currently recommended malaria elimination approaches are generally not feasible. In such hard-to-reach communities in Mon state, East Myanmar, Medical Action Myanmar introduced community health workers (CHWs) to deliver early diagnosis and treatment for malaria. We conducted a retrospective analysis to assess the impact of this intervention. METHODS AND FINDINGS: This retrospective analysis involved data collected routinely from a CHW programme in Mon state conducted between 2011 and 2018. A network of 172 CHWs serving a population of 236,340 was deployed. These CHWs carried out 260,201 malaria rapid diagnostic tests (RDTs) to investigate patients with acute febrile illness. The median blood examination rate was 1.33%; interquartile range (IQR) (0.38 to 3.48%); 95% CI [1.28%, 1.36%] per month. The changes in malaria incidence and prevalence in patients presenting with fever were assessed using negative binomial regression mixed effects models fitted to the observed data. The incidence of Plasmodium falciparum malaria (including mixed infections) declined by 70%; 95% CI [65%, 75%]; p < 0.001 for each year of CHW operation. The incidence of P. vivax malaria declined by 56%; 95% CI [50%, 62%]; p < 0.001 per year. Malaria RDT positivity rates for P. falciparum and P. vivax declined by 69%; 95% CI [62%, 75%]; p < 0.001 and 53%; 95% CI [47%, 59%]; p < 0.001 per year, respectively. Between 2017 and 2018, only 1 imported P. falciparum case was detected in 54,961 RDTs. The main limitations of the study are use of retrospective data with possible unidentified confounders and uncharacterised population movement. CONCLUSIONS: The introduction of CHWs providing community-based malaria diagnosis and treatment and basic health care services in remote communities in Mon state was associated with a substantial reduction in malaria. Within 6 years, P. falciparum was eliminated and the incidence of P. vivax fell markedly.


Subject(s)
Malaria, Falciparum , Malaria, Vivax , Malaria , Humans , Retrospective Studies , Community Health Workers , Myanmar/epidemiology , Plasmodium falciparum , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Malaria/epidemiology , Malaria, Vivax/diagnosis , Malaria, Vivax/epidemiology , Malaria, Vivax/prevention & control , Fever , Plasmodium vivax
2.
Healthc Low Resour Settings ; 11(1): 11278, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-38332803

ABSTRACT

C-reactive protein (CRP) point-of-care testing can reduce antibiotic prescribing in primary care patients with febrile and respiratory illness, yet little is known about its effects on treatment-seeking behavior. If patients go on to source antibiotics elsewhere, the impact of CRP testing will be limited. A randomized controlled trial assessed the impact of CRP testing on antibiotic prescriptions in Myanmar and Thai primary care patients with a febrile illness. Here we report patients' treatment-seeking behavior before and during the two-week study period. Self-reported antibiotic use is compared against urine antibacterial activity. Patients' opinions towards CRP testing were evaluated. Antibiotic use before study enrolment was reported by 5.4% while antimicrobial activity was detected in 20.8% of samples tested. During the study period, 14.8% of the patients sought additional healthcare, and 4.3% sourced their own antibiotics. Neither were affected by CRP testing. Overall, patients' satisfaction with their care and CRP testing was high. CRP testing did not affect patients' treatment-seeking behavior during the study period whilst modestly reducing antibiotic prescriptions. CRP testing appears to be acceptable to patients and their caregivers.

4.
Lancet Infect Dis ; 22(6): e171-e175, 2022 06.
Article in English | MEDLINE | ID: mdl-34953537

ABSTRACT

The countries of the Greater Mekong subregion-Myanmar, Thailand, Laos, Cambodia, and Vietnam-have set a target of eliminating all Plasmodium falciparum malaria by 2025. Generous funding has been provided, principally by The Global Fund to Fight AIDS, Tuberculosis, and Malaria, to achieve this objective and thereby prevent the spread of artemisinin-resistant Plasmodium falciparum to India and Africa. As the remaining time to reach agreed targets is limited and future external funding is uncertain, it is important to be realistic about the future and spend what remaining funding is left, wisely. New, labour intensive, vertical approaches to malaria elimination (such as the 1-3-7 approach) should not be promoted as these are unproven, likely to be ineffective, costly, and unlikely to be sustainable in the most remote areas where malaria prevalence is highest. Instead, the focus should be on reducing the malaria burden more rapidly in the remaining localised high transmission foci with proven effective interventions, including mass drug administration. Well supported community-based health workers are the key operatives in controlling malaria, but their remit should be broadened to sustain the uptake of their services as malaria declines. This strategy is a sustainable evolution, which will improve rural health care while ensuring progress towards malaria elimination.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Antimalarials/pharmacology , Antimalarials/therapeutic use , Humans , Malaria/drug therapy , Malaria/epidemiology , Malaria/prevention & control , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Mass Drug Administration , Plasmodium falciparum
5.
Antimicrob Agents Chemother ; 65(12): e0112121, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34516247

ABSTRACT

Increasing resistance in Plasmodium falciparum to artemisinins and their artemisinin combination therapy (ACT) partner drugs jeopardizes effective antimalarial treatment. Resistance is worst in the Greater Mekong subregion. Monitoring genetic markers of resistance can help to guide antimalarial therapy. Markers of resistance to artemisinins (PfKelch mutations), mefloquine (amplification of P. falciparum multidrug resistance-1 [PfMDR1]), and piperaquine (PfPlasmepsin2/3 amplification and specific P. falciparum chloroquine resistance transporter [PfCRT] mutations) were assessed in 6,722 P. falciparum samples from Vietnam, Lao People's Democratic Republic (PDR), Cambodia, Thailand, and Myanmar between 2007 and 2019. Against a high background prevalence of PfKelch mutations, PfMDR1 and PfPlasmepsin2/3 amplification closely followed regional drug pressures over time. PfPlasmepsin2/3 amplification preceded piperaquine resistance-associated PfCRT mutations in Cambodia and reached a peak prevalence of 23/28 (82%) in 2015. This declined to 57/156 (38%) after first-line treatment was changed from dihydroartemisinin-piperaquine to artesunate-mefloquine (ASMQ) between 2014 and 2017. The frequency of PfMDR1 amplification increased from 0/293 (0%) between 2012 and 2017 to 12/156 (8%) in 2019. Amplification of PfMDR1 and PfPlasmepsin2/3 in the same parasites was extremely rare (4/6,722 [0.06%]) and was dispersed over time. The mechanisms conferring mefloquine and piperaquine resistance may be counterbalancing. This supports the development of ASMQ plus piperaquine as a triple artemisinin combination therapy.


Subject(s)
Antimalarials , Malaria, Falciparum , Antimalarials/pharmacology , Antimalarials/therapeutic use , Drug Resistance/genetics , Drug Resistance, Multiple/genetics , Genetic Markers , Humans , Longitudinal Studies , Malaria, Falciparum/drug therapy , Multidrug Resistance-Associated Proteins/genetics , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Protozoan Proteins/therapeutic use
6.
Am J Trop Med Hyg ; 105(1): 217-221, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34097648

ABSTRACT

Rickets is an often-neglected, painful, and disabling childhood condition of impaired bone mineralization. In this case series we describe a cluster of 29 children with severe, painful bone deformities who live in the very remote region of Nagaland in northwest Myanmar. Children were found to have low 25-hydroxyvitamin D, elevated parathyroid hormone, and elevated alkaline phosphatase levels, consistent with nutritional rickets secondary to vitamin D deficiency, calcium deficiency, or a combination of the two. After treatment with vitamin D3 and calcium carbonate, significant improvement was seen in symptoms, biochemistry, and radiography. This is the first report of nutritional rickets in Myanmar in more than 120 years. Vitamin D and calcium supplementation, and food fortification for pregnant women and young children may be required to prevent this potentially devastating disease.


Subject(s)
Calcium/deficiency , Calcium/therapeutic use , Rickets/diagnosis , Rickets/drug therapy , Vitamin D Deficiency/complications , Vitamin D/therapeutic use , Adolescent , Alkaline Phosphatase/blood , Child , Child, Preschool , Female , Humans , India/epidemiology , Male , Myanmar/epidemiology , Parathyroid Hormone/blood , Rickets/epidemiology , Rickets/etiology , Rural Population/statistics & numerical data , Treatment Outcome , Vitamin D/analogs & derivatives , Vitamin D/blood
7.
Lancet Infect Dis ; 21(11): 1579-1589, 2021 11.
Article in English | MEDLINE | ID: mdl-34147154

ABSTRACT

BACKGROUND: To contain multidrug-resistant Plasmodium falciparum, malaria elimination in the Greater Mekong subregion needs to be accelerated while current antimalarials remain effective. We evaluated the safety, effectiveness, and potential resistance selection of dihydroartemisinin-piperaquine mass drug administration (MDA) in a region with artemisinin resistance in Myanmar. METHODS: We did a cluster-randomised controlled trial in rural community clusters in Kayin (Karen) state in southeast Myanmar. Malaria prevalence was assessed using ultrasensitive quantitative PCR (uPCR) in villages that were operationally suitable for MDA (villages with community willingness, no other malaria control campaigns, and a population of 50-1200). Villages were eligible to participate if the prevalence of malaria (all species) in adults was greater than 30% or P falciparum prevalence was greater than 10% (or both). Contiguous villages were combined into clusters. Eligible clusters were paired based on P falciparum prevalence (estimates within 10%) and proximity. Community health workers provided routine malaria case management and distributed long-lasting insecticidal bed-nets (LLINs) in all clusters. Randomisation of clusters (1:1) to the MDA intervention group or control group was by public coin-flip. Group allocations were not concealed. Three MDA rounds (3 days of supervised dihydroartemisinin-piperaquine [target total dose 7 mg/kg dihydroartemisinin and 55 mg/kg piperaquine] and single low-dose primaquine [target dose 0·25 mg base per kg]) were delivered to intervention clusters. Parasitaemia prevalence was assessed at 3, 5, 10, 15, 21, 27, and 33 months. The primary outcomes were P falciparum prevalence at months 3 and 10. All clusters were included in the primary analysis. Adverse events were monitored from the first MDA dose until 1 month after the final dose, or until resolution of any adverse event occurring during follow-up. This trial is registered with ClinicalTrials.gov, NCT01872702. FINDINGS: Baseline uPCR malaria surveys were done in January, 2015, in 43 villages that were operationally suitable for MDA (2671 individuals). 18 villages met the eligibility criteria. Three villages in close proximity were combined into one cluster because a border between them could not be defined. This gave a total of 16 clusters in eight pairs. In the intervention clusters, MDA was delivered from March 4 to March 17, from March 30 to April 10, and from April 27 to May 10, 2015. The weighted mean absolute difference in P falciparum prevalence in the MDA group relative to the control group was -10·6% (95% CI -15·1 to -6·1; p=0·0008) at month 3 and -4·5% (-10·9 to 1·9; p=0·14) at month 10. At month 3, the weighted P falciparum prevalence was 1·4% (0·6 to 3·6; 12 of 747) in the MDA group and 10·6% (7·0 to 15·6; 56 of 485) in the control group. Corresponding prevalences at month 10 were 3·2% (1·5 to 6·8; 34 of 1013) and 5·8% (2·5 to 12·9; 33 of 515). Adverse events were reported for 151 (3·6%) of 4173 treated individuals. The most common adverse events were dizziness (n=109) and rash or itching (n=20). No treatment-related deaths occurred. INTERPRETATION: In this low-transmission setting, the substantial reduction in P falciparum prevalence resulting from support of community case management was accelerated by MDA. In addition to supporting community health worker case management and LLIN distribution, malaria elimination programmes should consider using MDA to reduce P falciparum prevalence rapidly in foci of higher transmission. FUNDING: The Global Fund to Fight AIDS, Tuberculosis and Malaria.


Subject(s)
Artemisinins/pharmacology , Artemisinins/therapeutic use , Drug Resistance , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Quinolines/therapeutic use , Adolescent , Adult , Antimalarials/administration & dosage , Antimalarials/therapeutic use , Artemisinins/administration & dosage , Child , Cluster Analysis , Disease Eradication , Drug Therapy, Combination , Female , Humans , Malaria, Falciparum/epidemiology , Male , Mass Drug Administration , Myanmar/epidemiology , Primaquine/administration & dosage , Primaquine/therapeutic use , Quinolines/administration & dosage , Young Adult
8.
Trans R Soc Trop Med Hyg ; 115(8): 914-921, 2021 08 02.
Article in English | MEDLINE | ID: mdl-33681986

ABSTRACT

BACKGROUND: Lower respiratory infections constitute a major disease burden worldwide. Treatment is usually empiric and targeted towards typical bacterial pathogens. Understanding the prevalence of pathogens not covered by empirical treatment is important to improve diagnostic and treatment algorithms. METHODS: A prospective observational study in peri-urban communities of Yangon, Myanmar was conducted between July 2018 and April 2019. Sputum specimens of 299 adults presenting with fever and productive cough were tested for Mycobacterium tuberculosis (microscopy and GeneXpert MTB/RIF [Mycobacterium tuberculosis/resistance to rifampicin]) and Burkholderia pseudomallei (Active Melioidosis Detect Lateral Flow Assay and culture). Nasopharyngeal swabs underwent respiratory virus (influenza A, B, respiratory syncytial virus) polymerase chain reaction testing. RESULTS: Among 299 patients, 32% (95% confidence interval [CI] 26 to 37) were diagnosed with tuberculosis (TB), including 9 rifampicin-resistant cases. TB patients presented with a longer duration of fever (median 14 d) and productive cough (median 30 d) than non-TB patients (median fever duration 6 d, cough 7 d). One case of melioidosis pneumonia was detected by rapid test and confirmed by culture. Respiratory viruses were detected in 16% (95% CI 12 to 21) of patients. CONCLUSIONS: TB was very common in this population, suggesting that microscopy and GeneXpert MTB/RIF on all sputum samples should be routinely included in diagnostic algorithms for fever and cough. Melioidosis was uncommon in this population.


Subject(s)
Melioidosis , Mycobacterium tuberculosis , Respiratory Tract Infections , Tuberculosis, Pulmonary , Tuberculosis , Adult , Drug Resistance, Bacterial , Humans , Melioidosis/diagnosis , Melioidosis/drug therapy , Melioidosis/epidemiology , Myanmar/epidemiology , Primary Health Care , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/epidemiology , Sensitivity and Specificity , Sputum , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/epidemiology
9.
Int J Infect Dis ; 103: 494-501, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33310022

ABSTRACT

BACKGROUND: Little research has been published on the prevalence of rickettsial infections in Myanmar. This study determined the seroprevalence of immunoglobulin G (IgG) antibodies to rickettsial species in different regions of Myanmar. METHODS: Seven hundred leftover blood samples from patients of all ages in primary care clinics and hospitals in seven regions of Myanmar were collected. Samples were screened for scrub typhus group (STG), typhus group (TG) and spotted fever group (SFG) IgG antibodies using enzyme-linked immunosorbent assays (ELISA). Immunofluorescence assays were performed for the same rickettsial groups to confirm seropositivity if ELISA optical density ≥0.5. RESULTS: Overall IgG seroprevalence was 19% [95% confidence interval (CI) 16-22%] for STG, 5% (95% CI 3-7%) for TG and 3% (95% CI: 2-5%) for SFG. The seroprevalence of STG was particularly high in northern and central Myanmar (59% and 19-33%, respectively). Increasing age was associated with higher odds of STG and TG seropositivity [per 10-year increase, adjusted odds ratio estimate 1.68 (p < 0.01) and 1.24 (p = 0.03), respectively]. CONCLUSION: Rickettsial infections are widespread in Myanmar, with particularly high seroprevalence of STG IgG antibodies in central and northern regions. Healthcare workers should consider rickettsial infections as common causes of fever in Myanmar.


Subject(s)
Rickettsia Infections/epidemiology , Adult , Antibodies, Bacterial/blood , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin G/blood , Male , Middle Aged , Myanmar/epidemiology , Rickettsia Infections/immunology , Seroepidemiologic Studies
10.
Lancet Infect Dis ; 20(12): 1470-1480, 2020 12.
Article in English | MEDLINE | ID: mdl-32679084

ABSTRACT

BACKGROUND: The Greater Mekong subregion is a recurrent source of antimalarial drug resistance in Plasmodium falciparum malaria. This study aimed to characterise the extent and spread of resistance across this entire region between 2007 and 2018. METHODS: P falciparum isolates from Myanmar, Thailand, Laos, and Cambodia were obtained from clinical trials and epidemiological studies done between Jan 1, 2007, and Dec 31, 2018, and were genotyped for molecular markers (pfkelch, pfcrt, pfplasmepsin2, and pfmdr1) of antimalarial drug resistance. Genetic relatedness was assessed using microsatellite and single nucleotide polymorphism typing of flanking sequences around target genes. FINDINGS: 10 632 isolates were genotyped. A single long pfkelch Cys580Tyr haplotype (from -50 kb to +31·5 kb) conferring artemisinin resistance (PfPailin) now dominates across the eastern Greater Mekong subregion. Piperaquine resistance associated with pfplasmepsin2 gene amplification and mutations in pfcrt downstream of the Lys76Thr chloroquine resistance locus has also developed. On the Thailand-Myanmar border a different pfkelch Cys580Tyr lineage rose to high frequencies before it was eliminated. Elsewhere in Myanmar the Cys580Tyr allele remains widespread at low allele frequencies. Meanwhile a single artemisinin-resistant pfkelch Phe446Ile haplotype has spread across Myanmar. Despite intense use of dihydroartemisinin-piperaquine in Kayin state, eastern Myanmar, both in treatment and mass drug administrations, no selection of piperaquine resistance markers was observed. pfmdr1 amplification, a marker of resistance to mefloquine, remains at low prevalence across the entire region. INTERPRETATION: Artemisinin resistance in P falciparum is now prevalent across the Greater Mekong subregion. In the eastern Greater Mekong subregion a multidrug resistant P falciparum lineage (PfPailin) dominates. In Myanmar a long pfkelch Phe446Ile haplotype has spread widely but, by contrast with the eastern Greater Mekong subregion, there is no indication of artemisinin combination therapy (ACT) partner drug resistance from genotyping known markers, and no evidence of spread of ACT resistant P falciparum from the east to the west. There is still a window of opportunity to prevent global spread of ACT resistance. FUNDING: Thailand Science Research and Innovation, Initiative 5%, Expertise France, Wellcome Trust.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Plasmodium falciparum/drug effects , Asia, Southeastern/epidemiology , Genetic Markers , Haplotypes , Humans , Molecular Epidemiology
11.
Malar J ; 19(1): 193, 2020 May 27.
Article in English | MEDLINE | ID: mdl-32460780

ABSTRACT

BACKGROUND: Rapid diagnostic tests (RDTs) have become the most common diagnostic tool for detection of Plasmodium falciparum malaria, in particular in remote areas. RDT blood spots provide a source of parasite DNA for molecular analysis. In this study, the utility of RDTs for molecular analysis and the performance of different methods for whole genome amplification were investigated. METHODS: Positive P. falciparum RDTs were collected from Kayin, Myanmar from August 2014 to January 2016. The RDT samples were stored for 6 months, 9 months, 20 months, 21 months, and 32 months before DNA extraction and subsequent molecular analysis of P. falciparum kelch 13 (pfkelch13) mutations, P. falciparum multidrug resistance 1 (pfmdr1), and P. falciparum plasmepsin 2 (pfplasmepsin2) gene amplification. In addition, performance of four whole genome amplification (WGA) kits were compared, including REPLI-g®, MALBACTM, PicoPLEX®, and GenomePlex®, for which DNA quantity and quality were compared between original DNA and post-WGA products. RESULTS: The proportion of successful amplification of the different molecular markers was similar between blood spots analysed from RDTs stored for 6, 9, 20, 21, or 32 months. Successful amplification was dependent on the molecular markers fragment length (p value < 0.05): 18% for a 1245 bp fragment of pfkelch13, 71% for 364 bp of pfkelch13, 81% for 87 bp of pfmdr1, 81% for 108 bp of pfplasmepsin2. Comparison of the four WGA assay kits showed that REPLI-g®, MALBACTM, and PicoPLEX® increased the quantity of DNA 60 to 750-fold, whereas the ratio of parasite DNA amplification over human DNA was most favourable for MALBAC®. Sequencing results of pfkelch13, P. falciparum chloroquine resistance transporter (pfcrt), P. falciparum dihydrofolate reductase (pfdhfr) and six microsatellite markers assessed from the post-WGA product was the same as from the original DNA. CONCLUSIONS: Blood spots from RDTs are a good source for molecular analysis of P. falciparum, even after storage up to 32 months. WGA of RDT-derived parasite DNA reliably increase DNA quantity with sufficient quality for molecular analysis of resistance markers.


Subject(s)
Blood Specimen Collection/statistics & numerical data , DNA, Protozoan/analysis , Diagnostic Tests, Routine/statistics & numerical data , Nucleic Acid Amplification Techniques/statistics & numerical data , Plasmodium falciparum/genetics , Myanmar , Time Factors
12.
PLoS One ; 14(3): e0214280, 2019.
Article in English | MEDLINE | ID: mdl-30908523

ABSTRACT

BACKGROUND: Between 2013 and 2017, targeted malaria elimination (TME), a package of interventions that includes mass drug administration (MDA)-was piloted in communities with reservoirs of asymptomatic P. falciparum across the Greater Mekong sub-Region (GMS). Coverage in target communities is a key determinant of the effectiveness of MDA. Drawing on mixed methods research conducted alongside TME pilot studies, this article examines the impact of the community engagement, local social context and study design on MDA coverage. METHODS AND FINDINGS: Qualitative and quantitative data were collected using questionnaire-based surveys, semi-structured and in-depth interviews, focus group discussions, informal conversations, and observations of study activities. Over 1500 respondents were interviewed in Myanmar, Vietnam, Cambodia and Laos. Interview topics included attitudes to malaria and experiences of MDA. Overall coverage of mass anti-malarial administration was high, particularly participation in at least a single round (85%). Familiarity with and concern about malaria prompted participation in MDA; as did awareness of MDA and familiarity with the aim of eliminating malaria. Fear of adverse events and blood draws discouraged people. Hence, community engagement activities sought to address these concerns but their impact was mediated by the trust relationships that study staff could engender in communities. In contexts of weak healthcare infrastructure and (cash) poverty, communities valued the study's ancillary care and the financial compensation. However, coverage did not necessarily decrease in the absence of cash compensation. Community dynamics, affected by politics, village conformity, and household decision-making also affected coverage. CONCLUSIONS: The experimental nature of TME presented particular challenges to achieving high coverage. Nonetheless, the findings reflect those from studies of MDA under implementation conditions and offer useful guidance for potential regional roll-out of MDA: it is key to understand target communities and provide appropriate information in tailored ways, using community engagement that engenders trust.


Subject(s)
Antimalarials/therapeutic use , Malaria/prevention & control , Mass Drug Administration/methods , Adult , Cambodia , Community Participation/statistics & numerical data , Evaluation Studies as Topic , Focus Groups , Humans , Laos , Male , Middle Aged , Myanmar , Pilot Projects , Research Design , Social Environment , Vietnam
13.
Trop Med Infect Dis ; 3(1)2018 Mar 01.
Article in English | MEDLINE | ID: mdl-30274425

ABSTRACT

Sporadic cases of melioidosis have been diagnosed in Myanmar since the disease was first described in Yangon in 1911. Published and unpublished cases are summarized here, along with results from environmental and serosurveys. A total of 298 cases have been reported from seven states or regions between 1911 and 2018, with the majority of these occurring before 1949. Findings from soil surveys confirm the presence of Burkholderia pseudomallei in the environment in all three regions examined. The true epidemiology of the disease in Myanmar is unknown. Important factors contributing to the current gaps in knowledge are lack of awareness among clinicians and insufficient laboratory diagnostic capacity in many parts of the country. This is likely to have led to substantial under-reporting.

14.
BMC Med ; 16(1): 183, 2018 10 22.
Article in English | MEDLINE | ID: mdl-30343666

ABSTRACT

BACKGROUND: Community health workers (CHWs) can provide diagnosis and treatment of malaria in remote rural areas and are therefore key to the elimination of malaria. However, as incidence declines, uptake of their services could be compromised if they only treat malaria. METHODS: We conducted a retrospective analysis of 571,286 malaria rapid diagnostic tests conducted between 2011 and 2016 by 1335 CHWs supported by Medical Action Myanmar. We assessed rates of decline in Plasmodium falciparum and Plasmodium vivax incidence and rapid diagnostic test (RDT) positivity rates using negative binomial mixed effects models. We investigated whether broadening the CHW remit to provide a basic health care (BHC) package was associated with a change in malaria blood examination rates. RESULTS: Communities with CHWs providing malaria diagnosis and treatment experienced declines in P. falciparum and P. vivax malaria incidence of 70% (95% CI 66-73%) and 64% (59-68%) respectively each year of operation. RDT positivity rates declined similarly with declines of 70% (95% CI 66-73%) for P. falciparum and 65% (95% CI 61-69%) for P. vivax with each year of CHW operation. In four cohorts studied, adding a BHC package was associated with an immediate and sustained increase in blood examination rates (step-change rate ratios 2.3 (95% CI 2.0-2.6), 5.4 (95% CI 4.0-7.3), 1.7 (95% CI 1.4-2.1), and 1.1 (95% CI 1.0.1.3)). CONCLUSIONS: CHWs have overseen dramatic declines in P. falciparum and P. vivax malaria in rural Myanmar. Expanding their remit to general health care has sustained community uptake of malaria services. In similar settings, expanding health services offered by CHWs beyond malaria testing and treatment can improve rural health care while ensuring continued progress towards the elimination of malaria.


Subject(s)
Community Health Services/organization & administration , Delivery of Health Care/organization & administration , Health Personnel , Malaria/epidemiology , Community Health Services/methods , Delivery of Health Care/methods , Diagnostic Tests, Routine , Female , Humans , Incidence , Interrupted Time Series Analysis , Longitudinal Studies , Malaria/diagnosis , Male , Middle Aged , Myanmar/epidemiology , Plasmodium falciparum , Plasmodium vivax , Retrospective Studies , Rural Population
15.
Trends Parasitol ; 33(5): 353-363, 2017 05.
Article in English | MEDLINE | ID: mdl-28187990

ABSTRACT

In the Greater Mekong subregion (GMS), artemisinin resistance is increasingly compounded by partner drug resistance, causing high failure rates of artemisinin combination therapies in some areas. For its containment, an accelerated elimination strategy will be needed. This includes high-quality implementation of conventional malaria control measures: early case management with quality artemisinin combination therapies (avoiding artesunate monotherapies) and single gametocytocidal low dose of primaquine, vector control and surveillance. Village health workers (VHWs) play a key role in the provision of community-based services which have to reach even the most remote populations. Additional, more aggressive, approaches will be important to accelerate malaria elimination, which could include mass drug administrations, potentially in combination with ivermectin and vaccination, mass screening and treatment with novel diagnostics, reactive case detection, and other measures.


Subject(s)
Disease Eradication , Drug Resistance , Malaria, Falciparum/drug therapy , Malaria, Falciparum/prevention & control , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/pharmacology , Artemisinins/therapeutic use , Cambodia , Humans , Plasmodium falciparum/drug effects
16.
Appl Health Econ Health Policy ; 15(3): 299-306, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28185133

ABSTRACT

Healthcare services are often provided to a country as a whole, though in many cases the available resources can be more effectively targeted to specific geographically defined populations. In the case of malaria, risk is highly geographically heterogeneous, and many interventions, such as insecticide-treated bed nets and malaria community health workers, can be targeted to populations in a way that maximises impact for the resources available. This paper describes a framework for geographically targeted budget allocation based on the principles of cost-effectiveness analysis and applied to priority setting in malaria control and elimination. The approach can be used with any underlying model able to estimate intervention costs and effects given relevant local data. Efficient geographic targeting of core malaria interventions could significantly increase the impact of the resources available, accelerating progress towards elimination. These methods may also be applicable to priority setting in other disease areas.


Subject(s)
Cost-Benefit Analysis/statistics & numerical data , Disease Eradication/economics , Disease Eradication/statistics & numerical data , Health Policy/economics , Malaria/economics , Malaria/therapy , Resource Allocation/statistics & numerical data , Geography , Humans
17.
Lancet Infect Dis ; 17(5): 491-497, 2017 05.
Article in English | MEDLINE | ID: mdl-28161569

ABSTRACT

BACKGROUND: Evidence suggests that the PfKelch13 mutations that confer artemisinin resistance in falciparum malaria have multiple independent origins across the Greater Mekong subregion, which has motivated a regional malaria elimination agenda. We aimed to use molecular genotyping to assess antimalarial drug resistance selection and spread in the Greater Mekong subregion. METHODS: In this observational study, we tested Plasmodium falciparum isolates from Myanmar, northeastern Thailand, southern Laos, and western Cambodia for PfKelch13 mutations and for Pfplasmepsin2 gene amplification (indicating piperaquine resistance). We collected blood spots from patients with microscopy or rapid test confirmed uncomplicated falciparum malaria. We used microsatellite genotyping to assess genetic relatedness. FINDINGS: As part of studies on the epidemiology of artemisinin-resistant malaria between Jan 1, 2008, and Dec 31, 2015, we collected 434 isolates. In 2014-15, a single long PfKelch13 C580Y haplotype (-50 to +31·5 kb) lineage, which emerged in western Cambodia in 2008, was detected in 65 of 88 isolates from northeastern Thailand, 86 of 111 isolates from southern Laos, and 14 of 14 isolates from western Cambodia, signifying a hard transnational selective sweep. Pfplasmepsin2 amplification occurred only within this lineage, and by 2015 these closely related parasites were found in ten of the 14 isolates from Cambodia and 15 of 15 isolates from northeastern Thailand. C580Y mutated parasites from Myanmar had a different genetic origin. INTERPRETATION: Our results suggest that the dominant artemisinin-resistant P falciparum C580Y lineage probably arose in western Cambodia and then spread to Thailand and Laos, outcompeting other parasites and acquiring piperaquine resistance. The emergence and spread of fit artemisinin-resistant P falciparum parasite lineages, which then acquire partner drug resistance across the Greater Mekong subregion, threatens regional malaria control and elimination goals. Elimination of falciparum malaria from this region should be accelerated while available antimalarial drugs still remain effective. FUNDING: The Wellcome Trust and the Bill and Melinda Gates Foundation.


Subject(s)
Artemisinins/therapeutic use , Drug Resistance/genetics , Malaria, Falciparum/epidemiology , Molecular Epidemiology/methods , Plasmodium falciparum/genetics , Antimalarials/pharmacology , Antimalarials/therapeutic use , Cambodia/epidemiology , Genotype , Humans , Laos/epidemiology , Malaria, Falciparum/drug therapy , Microsatellite Repeats , Mutation , Plasmodium falciparum/drug effects , Plasmodium falciparum/isolation & purification , Quinolines/therapeutic use , Thailand/epidemiology
18.
Malar J ; 15: 185, 2016 Mar 31.
Article in English | MEDLINE | ID: mdl-27036739

ABSTRACT

BACKGROUND: Artemisinin resistance in Plasmodium falciparum extends across Southeast Asia where it is associated with worsening partner drug resistance and a decline in the efficacy of frontline artemisinin-based combination therapy. Dihydroartemisinin-piperaquine (DP) is an essential component of preventive and curative treatment in the region, but its therapeutic efficacy has fallen in Cambodia. METHODS: A prospective clinical and parasitological evaluation of DP was conducted at two sites in Upper Myanmar between August 2013 and December 2014, enrolling 116 patients with acute uncomplicated falciparum malaria. Patients received DP orally for 3 days together with primaquine 0.25 mg/kg on admission. Parasite clearance half-lives based on 6 hourly blood smears, and day 42 therapeutic responses were assessed as well as parasite K13 genotypes. RESULTS: Median parasite clearance half-life was prolonged, and clearance half-life was greater than 5 h in 21% of patients. Delayed parasite clearance was significantly associated with mutations in the propeller region of the parasite k13 gene. The k13 F446I mutation was found in 25.4% of infections and was associated with a median clearance half-life of 4.7 h compared with 2.7 h for infections without k13 mutations (p < 0.001). There were no failures after 42 days of follow-up, although 18% of patients had persistent parasitaemia on day 3. CONCLUSION: The dominant k13 mutation observed in Upper Myanmar, F446I, appears to be associated with an intermediate rate of parasite clearance compared to other common mutations described elsewhere in the Greater Mekong Subregion. Discerning this phenotype requires relatively detailed clearance measurements, highlighting the importance of methodology in assessing artemisinin resistance.


Subject(s)
Antimalarials/therapeutic use , Artemisinins/therapeutic use , Drug Resistance , Malaria, Falciparum/drug therapy , Parasitemia/drug therapy , Administration, Oral , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Humans , Infant , Malaria, Falciparum/parasitology , Male , Middle Aged , Mutation, Missense , Myanmar , Parasitemia/parasitology , Prospective Studies , Protozoan Proteins/genetics , Quinolines/therapeutic use , Young Adult
19.
Malar J ; 15: 41, 2016 Jan 25.
Article in English | MEDLINE | ID: mdl-26809885

ABSTRACT

BACKGROUND: Myanmar has the highest malaria incidence and attributed mortality in South East Asia with limited healthcare infrastructure to manage this burden. Establishing malaria Community Health Worker (CHW) programmes is one possible strategy to improve access to malaria diagnosis and treatment, particularly in remote areas. Despite considerable donor support for implementing CHW programmes in Myanmar, the cost implications are not well understood. METHODS: An ingredients based micro-costing approach was used to develop a model of the annual implementation cost of malaria CHWs in Myanmar. A cost model was constructed based on activity centres comprising of training, patient malaria services, monitoring and supervision, programme management, overheads and incentives. The model takes a provider perspective. Financial data on CHWs programmes were obtained from the 2013 financial reports of the Three Millennium Development Goal fund implementing partners that have been working on malaria control and elimination in Myanmar. Sensitivity and scenario analyses were undertaken to outline parameter uncertainty and explore changes to programme cost for key assumptions. RESULTS: The range of total annual costs for the support of one CHW was US$ 966-2486. The largest driver of CHW cost was monitoring and supervision (31-60% of annual CHW cost). Other important determinants of cost included programme management (15-28% of annual CHW cost) and patient services (6-12% of annual CHW cost). Within patient services, malaria rapid diagnostic tests are the major contributor to cost (64% of patient service costs). CONCLUSION: The annual cost of a malaria CHW in Myanmar varies considerably depending on the context and the design of the programme, in particular remoteness and the approach to monitoring and evaluation. The estimates provide information to policy makers and CHW programme planners in Myanmar as well as supporting economic evaluations of their cost-effectiveness.


Subject(s)
Community Health Workers/economics , Community Health Services/economics , Humans , Myanmar
20.
Malar J ; 14: 376, 2015 Sep 29.
Article in English | MEDLINE | ID: mdl-26416075

ABSTRACT

BACKGROUND: Funding for malaria control and elimination in Myanmar has increased markedly in recent years. While there are various malaria control tools currently available, two interventions receive the majority of malaria control funding in Myanmar: (1) insecticide-treated bed nets and (2) early diagnosis and treatment through malaria community health workers. This study aims to provide practical recommendations on how to maximize impact from investment in these interventions. METHODS: A simple decision tree is used to model intervention costs and effects in terms of years of life lost. The evaluation is from the perspective of the service provider and costs and effects are calculated in line with standard methodology. Sensitivity and scenario analysis are undertaken to identify key drivers of cost effectiveness. Standard cost effectiveness analysis is then extended via a spatially explicit resource allocation model. FINDINGS: Community health workers have the potential for high impact on malaria, particularly where there are few alternatives to access malaria treatment, but are relatively costly. Insecticide-treated bed nets are comparatively inexpensive and modestly effective in Myanmar, representing a low risk but modest return intervention. Unlike some healthcare interventions, bed nets and community health workers are not mutually exclusive nor are they necessarily at their most efficient when universally applied. Modelled resource allocation scenarios highlight that in this case there is no "one size fits all" cost effectiveness result. Health gains will be maximized by effective targeting of both interventions.


Subject(s)
Community Health Workers/economics , Insecticide-Treated Bednets/economics , Malaria, Falciparum/economics , Malaria, Falciparum/prevention & control , Cost-Benefit Analysis , Humans , Models, Statistical , Myanmar
SELECTION OF CITATIONS
SEARCH DETAIL
...