Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38766225

ABSTRACT

Geminal, multi-halogenated functional groups are widespread in natural products and pharmaceuticals, yet no synthetic methodologies exist that enable selective multi-halogenation of unactivated C-H bonds. Biocatalysts are powerful tools for late-stage C-H functionalization, as they operate with high degrees of regio-, chemo-, and stereoselectivity. 2-oxoglutarate (2OG)-dependent non-heme iron halogenases chlorinate and brominate aliphatic C-H bonds offering a solution for achieving these challenging transformations. Here, we describe the ability of a non-heme iron halogenase, SyrB2, to controllably halogenate non-native substrate alpha-aminobutyric acid (Aba) to yield mono-chlorinated, di-chlorinated, and tri-chlorinated products. These chemoselective outcomes are achieved by controlling the loading of 2OG cofactor and SyrB2 biocatalyst. By using a ferredoxin-based biological reductant for electron transfer to the catalytic center of SyrB2, we demonstrate order-of-magnitude enhancement in the yield of tri-chlorinated product that were previously inaccessible using any single halogenase enzyme. We also apply these strategies to broaden SyrB2's reactivity scope to include multi-bromination and demonstrate chemoenzymatic conversion of the ethyl side chain in Aba to an ethylyne functional group. We show how steric hindrance induced by the successive addition of halogen atoms on Aba's C4 carbon dictates the degree of multi-halogenation by hampering C3-C4 bond rotation within SyrB2's catalytic pocket. Overall, our work showcases the synthetic potential of iron halogenases to facilitate multi-C-H functionalization chemistry.

2.
bioRxiv ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38617253

ABSTRACT

Determination of substrate binding affinity (Kd) is critical to understanding enzyme function. An extensive number of methods have been developed and employed to study ligand/substrate binding, but the best approach depends greatly on the substrate and the enzyme in question. Below we describe how to measure the Kd of BesD, a non-heme iron halogenase, for its native substrate lysine using equilibrium dialysis with subsequent detection with High Performance Liquid Chromatography (HPLC). This method can be performed in anaerobic glove bag settings, requires readily available HPLC instrumentation for subsequent detection, and is adaptable to meet the needs of a variety of substrate affinity measurements.

3.
bioRxiv ; 2023 May 26.
Article in English | MEDLINE | ID: mdl-37292651

ABSTRACT

Non-heme iron halogenases (NHFe-Hals) catalyze the direct insertion of a chloride/bromide ion at an unactivated carbon position using a high-valent haloferryl intermediate. Despite more than a decade of structural and mechanistic characterization, how NHFe-Hals preferentially bind specific anions and substrates for C-H functionalization remains unknown. Herein, using lysine halogenating BesD and HalB enzymes as model systems, we demonstrate strong positive cooperativity between anion and substrate binding to the catalytic pocket. Detailed computational investigations indicate that a negatively charged glutamate hydrogen-bonded to iron's equatorial-aqua ligand acts as an electrostatic lock preventing both lysine and anion binding in the absence of the other. Using a combination of UV-Vis spectroscopy, binding affinity studies, stopped-flow kinetics investigations, and biochemical assays, we explore the implication of such active site assembly towards chlorination, bromination, and azidation reactivities. Overall, our work highlights previously unknown features regarding how anion-substrate pair binding govern reactivity of iron halogenases that are crucial for engineering next-generation C-H functionalization biocatalysts.

4.
Phys Chem Chem Phys ; 21(41): 22869-22878, 2019 Oct 24.
Article in English | MEDLINE | ID: mdl-31599901

ABSTRACT

The non-biological 2'-deoxy-2'-fluoro-arabinonucleic acid (2'F-ANA) may be used as a valid alternative to DNA in biomedical and electronic applications because of its higher resistance to hydrolysis and nuclease degradation. However, the advantage of using 2'F-ANA in such applications also depends on its charge-transfer properties compared to DNA. In this study, we compare the charge conduction properties of model 2'F-ANA and DNA double-strands, using structural snapshots from MD simulations to calculate the electronic couplings and reorganization energies associated with the hole transfer steps between adjacent nucleobase pairs. Inserting these charge-transfer parameters into a kinetic model for charge conduction, we find similar conductive properties for DNA and 2'F-ANA. Moreover, we find that 2'F-ANA's enhanced chemical stability does not correspond to a reduction in the nucleobase π-stack structural flexibility relevant to both electronic couplings and reorganization free energies. Our results promote the use of 2'F-ANA in applications that can be based on charge transport, such as biosensing and chip technology, where its chemical stability and conductivity can advantageously combine.


Subject(s)
Arabinonucleotides/chemistry , Biotechnology/methods , DNA/chemistry , Electronics , Molecular Dynamics Simulation
6.
Proc Natl Acad Sci U S A ; 116(32): 15811-15816, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31341081

ABSTRACT

A recently proposed oxidative damage protection mechanism in proteins relies on hole hopping escape routes formed by redox-active amino acids. We present a computational tool to identify the dominant charge hopping pathways through these residues based on the mean residence times of the transferring charge along these hopping pathways. The residence times are estimated by combining a kinetic model with well-known rate expressions for the charge-transfer steps in the pathways. We identify the most rapid hole hopping escape routes in cytochrome P450 monooxygenase, cytochrome c peroxidase, and benzylsuccinate synthase (BSS). This theoretical analysis supports the existence of hole hopping chains as a mechanism capable of providing hole escape from protein catalytic sites on biologically relevant timescales. Furthermore, we find that pathways involving the [4Fe4S] cluster as the terminal hole acceptor in BSS are accessible on the millisecond timescale, suggesting a potential protective role of redox-active cofactors for preventing protein oxidative damage.


Subject(s)
Proteins/chemistry , Catalysis , Catalytic Domain , Oxidation-Reduction , Time Factors
7.
Chem ; 5(1): 122-137, 2019 Jan 10.
Article in English | MEDLINE | ID: mdl-30714018

ABSTRACT

Recent experiments suggest that DNA-mediated charge transport might enable signaling between the [4Fe4S] clusters in the C-terminal domains of human DNA primase and polymerase α, as well as the signaling between other replication and repair high-potential [4Fe4S] proteins. Our theoretical study demonstrates that the redox signaling cannot be accomplished exclusively by DNA-mediated charge transport because part of the charge transfer chain has an unfavorable free energy profile. We show that hole or excess electron transfer between a [4Fe4S] cluster and a nucleic acid duplex through a protein medium can occur within microseconds in one direction, while it is kinetically hindered in the opposite direction. We present a set of signaling mechanisms that may occur with the assistance of oxidants or reductants, using the allowed charge transfer processes. These mechanisms would enable the coordinated action of [4Fe4S] proteins on DNA, engaging the [4Fe4S] oxidation state dependence of the protein-DNA binding affinity.

8.
Chem Commun (Camb) ; 55(2): 206-209, 2018 Dec 20.
Article in English | MEDLINE | ID: mdl-30520908

ABSTRACT

Using molecular dynamics simulations and electronic structure theory, we shed light on the charge dynamics that causes the differential interaction of tumor suppressor protein p53 with the p21 and Gadd45 genes in response to oxidative stress. We show that the sequence dependence of this selectivity results from competing charge transfer to the protein and through the DNA, with implications on the use of genome editing tools to influence the p53 regulatory function.


Subject(s)
DNA/genetics , DNA/metabolism , Tumor Suppressor Protein p53/metabolism , Base Pairing , Consensus Sequence/genetics , DNA/chemistry , Molecular Dynamics Simulation , Protein Binding , Static Electricity , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...