Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 341: 122810, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37925008

ABSTRACT

Detecting and quantifying subsurface leaks remains a challenge due to the complex nature and extent of belowground leak scenarios. To address these scenarios, monitoring and evaluating changes in gas leakage behavior over space and time are crucial for ensuring safe and efficient responses to known or potential gas leaks. This study demonstrates the capability of linking environmental and gas concentration data obtained using a low-cost, near real-time methane (CH4) detector network and an inverse gas migration model to capture and quantify non-steady state belowground natural gas (NG) leaks. The Estimating Surface Concentration Above Pipeline Emission (ESCAPE) model was modified to incorporate the impact of soil properties on gas migration. Field-scale controlled NG experiments with leakage rates ranging from 37 to 121 g/h indicate that elevated belowground near-surface (BNS) gas concentrations persist long before elevated surface concentrations are observed. On average, BNS CH4 concentrations were 20%-486% higher than surface CH4 concentrations within the monitoring radius of 4 m from the leak location. An increase in the BNS CH4 concentration was observed within 3 h as the leak rate increased from 37 to 89 g/h. However, due to the atmospheric fluctuations, any changes in surface CH4 concentrations could not be confirmed within this period. The plume area of the BNS CH4 extended approximately two times farther than that of the surface CH4 as the gas leak rate increased from 37 to 121 g/h. The estimated NG leak rates by the modified ESCAPE model agreed well with the experimental NG leak rates (m = 0.99 and R2 = 0.77), demonstrating that including soil characteristics and BNS CH4 measurements can advance estimations of non-steady NG leak rates in low and moderate NG leak rate scenarios. The CH4 detector network and model show potential as an innovative tool to improve operators' risk assessment and NG leakage response.


Subject(s)
Air Pollutants , Natural Gas , Natural Gas/analysis , Air Pollutants/analysis , Methane/analysis , Soil
2.
Sensors (Basel) ; 23(20)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37896513

ABSTRACT

Natural gas (NG) leaks from below-ground pipelines pose safety, economic, and environmental hazards. Despite walking surveys using handheld methane (CH4) detectors to locate leaks, accurately triaging the severity of a leak remains challenging. It is currently unclear whether CH4 detectors used in walking surveys could be used to identify large leaks that require an immediate response. To explore this, we used above-ground downwind CH4 concentration measurements made during controlled emission experiments over a range of environmental conditions. These data were then used as the input to a novel modeling framework, the ESCAPE-1 model, to estimate the below-ground leak rates. Using 10-minute averaged CH4 mixing/meteorological data and filtering out wind speed < 2 m s-1/unstable atmospheric data, the ESCAPE-1 model estimates small leaks (0.2 kg CH4 h-1) and medium leaks (0.8 kg CH4 h-1) with a bias of -85%/+100% and -50%/+64%, respectively. Longer averaging (≥3 h) results in a 55% overestimation for small leaks and a 6% underestimation for medium leaks. These results suggest that as the wind speed increases or the atmosphere becomes more stable, the accuracy and precision of the leak rate calculated by the ESCAPE-1 model decrease. With an uncertainty of ±55%, our results show that CH4 mixing ratios measured using industry-standard detectors could be used to prioritize leak repairs.

3.
Environ Pollut ; 312: 120027, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36029906

ABSTRACT

The 2015 Paris agreement aims to cut greenhouse gas emissions and keep global temperature rise below 2 °C above pre-industrial levels. Reducing CH4 emissions from leaking pipelines presents a relatively achievable objective. While walking and driving surveys are commonly used to detect leaks, the detection probability (DP) is poorly characterized. This study aims to investigate how leak rates, survey distance and speed, and atmospheric conditions affect the DP in controlled belowground conditions with release rates of 0.5-8.5 g min-1. Results show that DP is highly influenced by survey speed, atmospheric stability, and wind speed. The average DP in Pasquill-Gifford stability (PG) class A is 85% at a low survey speed (2-11 mph) and decreases to 68%, 63%, 65%, and 60% in PGSC B/C, D, E/F, and G respectively. It is generally less than 25% at a high survey speed (22-34 mph), regardless of stability conditions and leak rates. Using the measurement data, a validated DP model was further constructed and showed good performance (R2: 0.76). The options of modeled favorable weather conditions (i.e., PG stability class and wind speed) to have a high DP (e.g., >50%) are rapidly decreased with the increase in survey speed. Walking survey is applicable over a wider range of weather conditions, including PG stability class A to E/F and calm to medium winds (0-5 m s-1). A driving survey at a low speed (11 mph) can only be conducted under calm to low wind speed conditions (0-3 m s-1) to have an equivalent DP to a walking survey. Only calm wind conditions in PG A (0-1 m s-1) are appropriate for a high driving speed (34 mph). These findings showed that driving survey providers need to optimize the survey schemes to achieve a DP equivalence to the traditional walking survey.


Subject(s)
Air Pollutants , Greenhouse Gases , Air Pollutants/analysis , Biodiversity , Environmental Monitoring/methods , Greenhouse Gases/analysis , Methane/analysis , Natural Gas/analysis , Probability , Temperature
4.
Environ Pollut ; 267: 115514, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33254704

ABSTRACT

Rapid response to underground natural gas leaks could mitigate methane emissions and reduce risks to the environment, human health and safety. Identification of large, potentially hazardous leaks could have environmental and safety benefits, including improved prioritization of response efforts and enhanced understanding of relative climate impacts of emission point sources. However, quantitative estimation of underground leakage rates remains challenging, considering the complex nature of methane transport processes. We demonstrate a novel method for estimating underground leak rates based on controlled underground natural gas release experiments at the field scale. The proposed method is based on incorporation of easily measurable field parameters into a dimensionless concentration number, ε, which considers soil and fluid characteristics. A series of field experiments was conducted to evaluate the relationship between the underground leakage rate and surface methane concentration data over varying soil and pipeline conditions. Peak surface methane concentrations increased with leakage rate, while surface concentrations consistently decreased exponentially with distance from the source. Deviations between the estimated and actual leakage rates ranged from 9% to 33%. A numerical modeling study was carried out by the TOUGH3 simulator to further evaluate how leak rate and subsurface methane transport processes affect the resulting methane surface profile. These findings show that the proposed leak rate estimation method may be useful for prioritizing leak repair, and warrant broader field-scale method validation studies. A method was developed to estimate fugitive emission rates from underground natural gas pipeline leaks. The method could be applied across a range of soil and surface covering conditions.


Subject(s)
Air Pollutants , Natural Gas , Air Pollutants/analysis , Climate , Humans , Methane/analysis , Natural Gas/analysis , Soil
5.
Chemosphere ; 241: 125116, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31683429

ABSTRACT

Oscillating cycles of dewatering (termed drying) and rewetting during managed aquifer recharge (MAR) are used to maintain infiltration rates and could also exert an influence on subsurface microbial structure and respiratory processes. Despite this practice, little knowledge is available about changes to microbial community structure and trace organic chemical biodegradation potential in MAR systems under these conditions. A biologically active two-dimensional (2D) synthetic MAR system equipped with automated sensors (temperature, water pressure, conductivity, soil moisture, oxidation-reduction potential) and embedded water and soil sampling ports was used to test and model these important subsurface processes at the meso-scale. The fate and transport of the antiepileptic drug carbamazepine, the antibiotics sulfamethoxazole and trimethoprim, and the flame retardant tris (2-chloroethyl) phosphate were simulated using the finite element analysis model, FEFLOW. All of these compounds exhibit moderate to poor biodegradability in MAR systems. Within the operational MAR scenario tested, three episodic drying cycles spanning between 18 and 24 days were conducted over a period of 184 days. Notably, cessation of flow and partial dewatering of the 2D synthetic aquifer during dry cycles caused no measurable decrease in soil moisture content beyond the near-surface layer. The episodic flow introduction and dewatering cycles in turn had little impact on overall trace organic chemical biotransformation behavior and soil microbial community structure. However, spatial differences in oxidation-reduction potential and soil moisture were both identified as significant environmental predictors for microbial community structure in the 2D synthetic aquifer.


Subject(s)
Biodegradation, Environmental , Desiccation/methods , Groundwater/chemistry , Water Pollutants, Chemical/chemistry , Wettability , Biotransformation , Geological Phenomena , Groundwater/microbiology , Microbiota , Organic Chemicals/analysis , Organic Chemicals/chemistry , Oxidation-Reduction , Soil Microbiology , Water Pollutants, Chemical/analysis
6.
J Contam Hydrol ; 183: 1-15, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26484479

ABSTRACT

In-situ bioremediation, a widely applied treatment technology for source zones contaminated with dense non-aqueous phase liquids (DNAPLs), has proven economical and reasonably efficient for long-term management of contaminated sites. Successful application of this remedial technology, however, requires an understanding of the complex interaction of transport, mass transfer, and biotransformation processes. The bioenhancement factor, which represents the ratio of DNAPL mass transfer under microbially active conditions to that which would occur under abiotic conditions, is commonly used to quantify the effectiveness of a particular bioremediation remedy. To date, little research has been directed towards the development and validation of methods to predict bioenhancement factors under conditions representative of real sites. This work extends an existing, first-order, bioenhancement factor expression to systems with zero-order and Monod kinetics, representative of many source-zone scenarios. The utility of this model for predicting the bioenhancement factor for previously published laboratory and field experiments is evaluated. This evaluation demonstrates the applicability of these simple bioenhancement factors for preliminary experimental design and analysis, and for assessment of dissolution enhancement in ganglia-contaminated source zones. For ease of application, a set of nomographs is presented that graphically depicts the dependence of bioenhancement factor on physicochemical properties. Application of these nomographs is illustrated using data from a well-documented field site. Results suggest that this approach can successfully capture field-scale, as well as column-scale, behavior. Sensitivity analyses reveal that bioenhanced dissolution will critically depend on in-situ biomass concentrations.


Subject(s)
Biodegradation, Environmental , Models, Theoretical , Water Pollutants, Chemical/analysis , Solubility , Water Pollutants, Chemical/chemistry
7.
Ground Water ; 53(5): 685-98, 2015.
Article in English | MEDLINE | ID: mdl-25535651

ABSTRACT

The generation of vapor-phase contaminant plumes within the vadose zone is of interest for contaminated site management. Therefore, it is important to understand vapor sources such as non-aqueous-phase liquids (NAPLs) and processes that govern their volatilization. The distribution of NAPL, gas, and water phases within a source zone is expected to influence the rate of volatilization. However, the effect of this distribution morphology on volatilization has not been thoroughly quantified. Because field quantification of NAPL volatilization is often infeasible, a controlled laboratory experiment was conducted in a two-dimensional tank (28 cm × 15.5 cm × 2.5 cm) with water-wet sandy media and an emplaced trichloroethylene (TCE) source. The source was emplaced in two configurations to represent morphologies encountered in field settings: (1) NAPL pools directly exposed to the air phase and (2) NAPLs trapped in water-saturated zones that were occluded from the air phase. Airflow was passed through the tank and effluent concentrations of TCE were quantified. Models were used to analyze results, which indicated that mass transfer from directly exposed NAPL was fast and controlled by advective-dispersive-diffusive transport in the gas phase. However, sources occluded by pore water showed strong rate limitations and slower effective mass transfer. This difference is explained by diffusional resistance within the aqueous phase. Results demonstrate that vapor generation rates from a NAPL source will be influenced by the soil water content distribution within the source. The implications of the NAPL morphology on volatilization in the context of a dynamic water table or climate are discussed.


Subject(s)
Models, Theoretical , Soil Pollutants/analysis , Trichloroethylene/analysis , Water Pollutants, Chemical/analysis , Diffusion , Gases , Porosity , Volatilization , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...