Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Nutr Diabetes ; 14(1): 43, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862477

ABSTRACT

BACKGROUND: We previously reported that, among all the naturally occurring amino acids, L-valine is the most powerful luminal stimulator of glucagon-like peptide 1 (GLP-1) release from the upper part of the rat small intestine. This makes L-valine an interesting target for nutritional-based modulation of GLP-1 secretion. However, the molecular mechanism of L-valine-induced secretion remains unknown. METHODS: We aimed to investigate the effect of orally given L-valine in mice and to identify the molecular details of L-valine stimulated GLP-1 release using the isolated perfused rat small intestine and GLUTag cells. In addition, the effect of L-valine on hormone secretion from the distal intestine was investigated using a perfused rat colon. RESULTS: Orally given L-valine (1 g/kg) increased plasma levels of active GLP-1 comparably to orally given glucose (2 g/kg) in male mice, supporting that L-valine is a powerful stimulator of GLP-1 release in vivo (P > 0.05). Luminal L-valine (50 mM) strongly stimulated GLP-1 release from the perfused rat small intestine (P < 0.0001), and inhibition of voltage-gated Ca2+-channels with nifedipine (10 µM) inhibited the GLP-1 response (P < 0.01). Depletion of luminal Na+ did not affect L-valine-induced GLP-1 secretion (P > 0.05), suggesting that co-transport of L-valine and Na+ is not important for the depolarization necessary to activate the voltage-gated Ca2+-channels. Administration of the KATP-channel opener diazoxide (250 µM) completely blocked the L-valine induced GLP-1 response (P < 0.05), suggesting that L-valine induced depolarization arises from metabolism and opening of KATP-channels. Similar to the perfused rat small intestine, L-valine tended to stimulate peptide tyrosine-tyrosine (PYY) and GLP-1 release from the perfused rat colon. CONCLUSIONS: L-valine is a powerful stimulator of GLP-1 release in rodents. We propose that intracellular metabolism of L-valine leading to closure of KATP-channels and opening of voltage-gated Ca2+-channels are involved in L-valine induced GLP-1 secretion.


Subject(s)
Glucagon-Like Peptide 1 , Intestine, Small , KATP Channels , Valine , Animals , Glucagon-Like Peptide 1/metabolism , Male , Valine/pharmacology , Rats , Mice , Intestine, Small/metabolism , Intestine, Small/drug effects , KATP Channels/metabolism , Calcium Channels/metabolism , Colon/metabolism , Colon/drug effects , Mice, Inbred C57BL , Rats, Wistar
2.
Front Endocrinol (Lausanne) ; 15: 1362711, 2024.
Article in English | MEDLINE | ID: mdl-38586454

ABSTRACT

Objective: Fiber-free diet impairs intestinal and colonic health in mice, in parallel with a reduction in glucagon like peptide-1 (GLP-1) levels. Endogenous GLP-1 is important for intestinal growth and maintenance of the intestinal integrity. We aimed to investigate whether fiber-free diet reduces luminal content of metabolites which, upon supplementation, could increase GLP-1 secretion and restore the adverse effects of fiber-free diet. Methods: Untargeted metabolomics (LC-MS) was performed on colonic content of mice fed a fiber-free diet, identifying a metabolite of particular interest: indole-3-carboxyaldehyde (I3A). We exposed cultured GLUTag cells to I3A, and measured cumulative GLP-1 secretion. Isolated colon perfusions were performed in male C57BL/6JRj mice and Wistar rats. I3A was administered luminally or vascularly, and GLP-1 was measured in portal vein effluent. Finally, female C57BL/6JRJ mice were fed chow or fiber-free diet, with I3A or vehicle by oral gavage. After 10 days, plasma GLP-1 (ELISA) and intestinal permeability (FITC-dextran) were measured, animals were sacrificed and organs removed for histology. Results: Mice fed a fiber-free diet had significantly lower I3A in their colonic content compared to a control diet (7883 ± 3375 AU, p=0.04). GLP-1 secretion from GLUTag cells was unchanged after five minutes of exposure to I3A. However, GLP-1 levels increased after 120 minutes of exposure to 1 mM (60% increase, p=0.016) and 5 mM (89% increase, p=0.0025) I3A. In contrast, 48 h exposure to 1 mM decreased GLP-1 secretion (51% decrease, p<0.001) and viability. In isolated perfused mouse and rat colon, I3A applied into the luminal or vascular side did not affect GLP-1 secretion. Mice fed a fiber-free diet tended to weigh less compared to chow fed mice; and the small intestine and colon were significantly smaller. No differences were seen in crypt depth, villus length, mucosal area, and intestinal permeability. Supplementing I3A did not affect body weight, morphology or plasma GLP-1 levels. Conclusions: Fiber-free diet lowered colonic content of I3A in mice. I3A stimulates GLP-1 secretion in vitro, but not in animal studies. Moreover, it has no evident beneficial effect on intestinal health when administered in vivo.


Subject(s)
Glucagon-Like Peptide 1 , Intestine, Small , Rats , Mice , Animals , Male , Female , Rats, Wistar , Mice, Inbred C57BL , Intestine, Small/metabolism , Glucagon-Like Peptide 1/metabolism , Diet
3.
Diabetes ; 73(5): 671-681, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38295385

ABSTRACT

Dipeptidyl peptidase 4 (DPP-4) and neprilysin (NEP) rapidly degrade glucagon-like peptide 1 (GLP-1) in mice. Commercially available sandwich ELISA kits may not accurately detect the degradation products, leading to potentially misleading results. We aimed to stabilize GLP-1 in mice, allowing reliable measurement with sensitive commercially available ELISA kits. Nonanesthetized male C57Bl/6JRj mice were subjected to an oral glucose tolerance test (OGTT; 2 g/kg glucose), and plasma total and intact GLP-1 were measured (Mercodia and Alpco ELISA kits, respectively). No GLP-1 increases were seen in samples taken beyond 15 min after the glucose load. Samples taken at 5 and 10 min after the OGTT showed a minor increase in total, but not intact, GLP-1. We then administered saline (control), or a DPP-4 inhibitor (valine pyrrolidide or sitagliptin) with or without an NEP-inhibitor (sacubitril), 30 min before the OGTT. In the inhibitor groups only, intact GLP-1 increased significantly during the OGTT. After injecting male C57Bl/6JRj mice with a known dose of GLP-1(7-36)NH2, peak GLP-1 levels were barely detectable after saline but were 5- to 10-fold higher during sitagliptin and the combination of sitagliptin/sacubitril. The half-life of the GLP-1 plasma disappearance increased up to sevenfold during inhibitor treatment. We conclude that reliable measurement of GLP-1 secretion is not possible in mice in vivo with commercially available sandwich ELISA kits, unless degradation is prevented by inhibition of DPP-4 and perhaps NEP. The described approach allows improved estimates of GLP-1 secretion for future studies, although it is a limitation that these inhibitors additionally influence levels of insulin and glucagon.


Subject(s)
Aminobutyrates , Biphenyl Compounds , Dipeptidyl-Peptidase IV Inhibitors , Glucagon-Like Peptide 1 , Male , Mice , Animals , Glucagon-Like Peptide 1/metabolism , Blood Glucose/metabolism , Dipeptidyl Peptidase 4/metabolism , Glucose/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Sitagliptin Phosphate/pharmacology
4.
Diabetes Metab Res Rev ; 39(8): e3699, 2023 11.
Article in English | MEDLINE | ID: mdl-37485788

ABSTRACT

In recent years, we have witnessed the many beneficial effects of glucagon-like peptide (GLP)-1 receptor agonists, including the reduction in cardiovascular risk in patients with type 2 diabetes, and the reduction of body weight in those with obesity. Increasing evidence suggests that these agents differ considerably from endogenous GLP-1 when it comes to their routes of action, although their clinical effects appear to be the same. Given the limitations of the GLP-1 receptor agonists, could it be useful to develop agents which stimulate GLP-1 release? Here we will discuss the differences and similarities between GLP-1 receptor agonists and endogenous GLP-1, and will detail how endogenous GLP-1-when stimulated appropriately-could have clinically relevant effects.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon-Like Peptide 1 , Humans , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/therapeutic use , Glucagon-Like Peptide-1 Receptor/agonists , Obesity/complications , Obesity/drug therapy
6.
Front Allergy ; 4: 1115022, 2023.
Article in English | MEDLINE | ID: mdl-37007648

ABSTRACT

Background: Food allergy to peanut and soybean, both legumes, is highly prevalent. The consumption of other legumes and legume protein isolates, some of which may be considered novel foods, is increasing. This may lead to an increase in sensitization and allergy and may pose a risk for legume-allergic (e.g. peanut and soybean) patients due to cross-reactivity. Objective: This study investigated the frequency of co-sensitization and co-allergy between legumes and the role of different protein families. Methods: Six legume-allergic patient groups were included: peanut (n = 30), soybean (n = 30), lupine (n = 30), green pea (n = 30), lentil (n = 17), bean (n = 9). IgE binding to total extracts, protein fractions (7S/11S globulin, 2S albumin, albumin), and 16 individual proteins from 10 legumes (black lentil, blue lupine, chickpea, faba bean, green lentil, pea, peanut, soybean, white bean, and white lupine) was measured by line blot. Results: Co-sensitization varied from 36.7% to 100%. Mono-sensitization was only found in soybean (16.7%), peanut (10%), and green pea-allergic (3.3%) patients. A high frequency of co-sensitization between the 7S/11S globulin fractions of all 10 legumes and individual 7S and 11S globulins was observed. In peanut and soybean-allergic patients, co-allergies for other legumes were uncommon (≤16,7%), while in green pea, lupine, lentil, and bean-allergic patients co-allergy for peanut (64.7%-77.8%) or soybean (50%-64.7%) was frequently seen. Conclusion: Co-sensitization between legumes was high, but generally not clinically relevant. Co-allergy to other legumes was not often seen in peanut- and soybean allergic patients. The 7S and 11S globulins were likely responsible for the observed co-sensitization.

7.
Diabetes Obes Metab ; 25(1): 198-207, 2023 01.
Article in English | MEDLINE | ID: mdl-36089810

ABSTRACT

AIM: To study the effects of the sodium-glucose co-transporter-2 (SGLT2) inhibitor empagliflozin, the angiotensin receptor blocker (ARB) losartan, and their combination on blood pressure, while studying the mechanisms potentially involved. METHODS: A total of 24 people with type 2 diabetes (T2D) (age: 66 ± 6 years; body mass index: 31.0 ± 3 kg/m2 ; estimated glomerular filtration rate: 90 ml/min/1.73m2 ) received a 1-week treatment with empagliflozin 10 mg once daily, losartan 50 mg once daily, their combination, and placebo, in a randomized double-blind crossover design, with 4-week washout periods in between. Blood pressure, arterial stiffness, autonomic nervous system activity and plasma volume, extracellular fluid and serum albumin were assessed. RESULTS: Versus placebo (139 mmHg), empagliflozin reduced systolic blood pressure (SBP) by 8 mmHg (P = .001), losartan by 12 mmHg (P = .001) and empagliflozin + losartan by 15 mmHg (P < .001). Combination therapy had a larger SBP-lowering effect versus empagliflozin monotherapy (-7 [95% CI -12; -2] mmHg) and numerically larger effects versus losartan monotherapy (-3 [-8; 2] mmHg). Empagliflozin reduced sympathetic nervous system (SNS) activity, arterial stiffness and extracellular fluid, while increasing serum albumin. Losartan reduced SNS activity and arterial stiffness. Combination therapy induced volume contraction variables, together with a reduction in SNS activity and arterial stiffness. CONCLUSION: In people with T2D, SGLT2 inhibition in combination with an ARB had a larger blood pressure-lowering effect versus placebo than either of the drugs alone. Our data further suggest that the mechanisms underlying these blood pressure reductions at least partially differ between these agents.


Subject(s)
Diabetes Mellitus, Type 2 , Losartan , Humans , Middle Aged , Aged , Losartan/pharmacology , Losartan/therapeutic use , Blood Pressure , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Cross-Over Studies , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Serum Albumin
9.
Diabetes Res Clin Pract ; 189: 109964, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35716850

ABSTRACT

Cardiovascular autonomic neuropathy (CAN) is suggested to underlie hypoglycaemic risk in impaired awareness of hypoglycaemia (IAH). We assessed the prevalence of CAN and the association between glucose variability (GV) and cardiovascular autonomic function in patients with type 1 diabetes (T1DM) and IAH. This study is a post-hoc-analysis of results obtained with the IN-CONTROL-trial, designed to assess the effects of continuous glucose monitoring (CGM) on glycaemia. Forty participants (aged 46.4 ± 11.4 years, diabetes duration 29.1 ± 13.5 years, HbA1c 7.5 ± 0.8%(58.2 ± 8.8 mmol/mol)) underwent 2-week blinded CGM measurements to obtain GV indices. Standardized cardiovascular reflex tests were used to determine the presence of CAN. Cardiovascular autonomic function was assessed with heart rate variability (HRV) measures. 14(35%) participants were classified as having CAN. Participants with CAN had lower percentage time spent in hypoglycaemic range and low blood glucose index(LBGI). After correction for confounders, a significant positive association was found between the coefficient of variation (CV) or time spent in hypoglycaemic range and HRV measures SDRR or RMSSD, and between LBGI and RMSSD. In patients with T1DM and IAH, hypoglycaemic parameters were associated with better cardiovascular autonomic function and lower prevalence of CAN. This suggests that autonomic neuropathy does not seem to further deteriorate hypoglycaemic risk in patients with IAH.


Subject(s)
Diabetes Mellitus, Type 1 , Hypoglycemia , Adult , Awareness , Blood Glucose , Blood Glucose Self-Monitoring , Diabetes Mellitus, Type 1/complications , Glucose , Humans , Hypoglycemic Agents/adverse effects , Middle Aged
10.
Cardiovasc Diabetol ; 21(1): 63, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35484607

ABSTRACT

BACKGROUND: Sodium-glucose cotransporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1RA) lower blood pressure (BP). When SGLT2i and GLP-1RA are combined, synergistic effects on BP have been observed. The mechanisms underlying these BP reductions are incompletely understood. The aim of this study was to assess the mechanisms underlying the BP reduction with the SGLT2i dapagliflozin, GLP-1RA exenatide, and dapagliflozin-exenatide compared with placebo in people with obesity and type 2 diabetes. METHODS: Sixty-six people with type 2 diabetes were randomized to 16 weeks of dapagliflozin 10 mg/day, exenatide 10 µg twice daily, dapagliflozin-exenatide, or placebo treatment. The effect of treatments on estimates of: (1) plasma volume (calculated by Strauss formula, bioimpedance spectroscopy, hematocrit, (2) autonomic nervous system activity (heart rate variability), (3) arterial stiffness (pulse wave applanometry), (4) systemic hemodynamic parameters including peripheral vascular resistance, cardiac output and stroke volume (all derived from non-invasively systemic hemodynamic monitoring), and (5) natriuresis (24-hour urine collection) were assessed after 10 days and 16 weeks of treatment. RESULTS: After 10 days, dapagliflozin reduced systolic BP (SBP) by - 4.7 mmHg, and reduced plasma volume. After 16 weeks, dapagliflozin reduced SBP by - 4.4 mmHg, and reduced sympathetic nervous system (SNS) activity. Exenatide had no effect on SBP, but reduced parasympathetic nervous system activity after 10 days and 16 weeks. After 10 days, dapagliflozin-exenatide reduced SBP by - 4.2 mmHg, and reduced plasma volume. After 16 weeks, dapagliflozin-exenatide reduced SBP by - 6.8 mmHg, and the reduction in plasma volume was still observed, but SNS activity was unaffected. CONCLUSIONS: The dapagliflozin-induced plasma volume contraction may contribute to the initial SBP reduction, while a reduction in SNS activity may contribute to the persistent SBP reduction. Dapagliflozin-exenatide resulted in the largest decrease in SBP. The effect on plasma volume was comparable to dapagliflozin monotherapy, and SNS activity was not reduced, therefore other mechanisms are likely to contribute to the blood pressure lowering effect of this combination, which need further investigation. Trial registration Clinicaltrials.gov, NCT03361098.


Subject(s)
Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Benzhydryl Compounds , Blood Pressure , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/drug therapy , Exenatide/adverse effects , Glucosides , Humans , Hypoglycemic Agents/adverse effects , Sodium-Glucose Transporter 2 Inhibitors/adverse effects
11.
J Diabetes Complications ; 36(4): 108166, 2022 04.
Article in English | MEDLINE | ID: mdl-35221224

ABSTRACT

OBJECTIVE: Kidney insulin clearance, proposed to be the main route of extra-hepatic insulin clearance, occurs in tubular cells following glomerular filtration and peritubular uptake, a process that may be impaired in people with type 2 diabetes (T2D) and/or impaired kidney function. Human studies that investigated kidney insulin clearance are limited by the invasive nature of the measurement. Instead, we evaluated relationships between whole-body insulin clearance, and gold-standard measured kidney function and insulin sensitivity in adults with T2D and normal kidney function. RESEARCH DESIGN AND METHODS: We determined insulin, inulin/iohexol and para-aminohippuric acid (PAH) clearances during a hyperinsulinemic-euglycemic clamp to measure whole-body insulin clearance and kidney function. Insulin sensitivity was expressed by glucose infusion rate (M value). Associations between whole-body insulin clearance, kidney function and insulin sensitivity were examined using univariable and multivariable linear regressions models. RESULTS: We investigated 44 predominantly male (77%) T2D adults aged 63 ± 7, with fat mass 34.5 ± 9 kg, lean body mass 63.0 ± 11.8 kg, and HbA1c 7.4 ± 0.6%. Average whole-body insulin clearance was 1188 ± 358 mL/min. Mean GFR was 110 ± 22 mL/min, mean ERPF 565 ± 141 mL/min, and M value averaged 3.9 ± 2.3 mg/min. Whole-body insulin clearance was positively correlated with lean body mass, ERPF and insulin sensitivity, but not with GFR. ERPF explained 6% of the variance when entered in a nested multivariable linear regression model op top of lean body mass (25%) and insulin sensitivity (15%). CONCLUSIONS: In adults with T2D and normal kidney function, whole-body insulin clearance was predicted best by lean body mass and insulin sensitivity, and to a lesser extent by ERPF. GFR was not associated with whole-body insulin clearance. In contrast to prior understanding, this suggests that in this population kidney insulin clearance may not play such a dominant role in whole-body insulin clearance.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Adult , Female , Glomerular Filtration Rate , Humans , Insulin , Insulin, Regular, Human , Kidney , Male , Renal Plasma Flow
12.
J Diabetes Complications ; 36(3): 108127, 2022 03.
Article in English | MEDLINE | ID: mdl-35067449

ABSTRACT

AIMS: Glomerular hyperfiltration plays a key role in the pathophysiology of diabetic kidney disease (DKD). Mechanisms underlying this adverse hemodynamic profile are incompletely understood. We hypothesized that systemic vascular pathology, including endothelial dysfunction and arterial stiffness, relates to glomerular hyperfiltration indicated by filtration fraction (FF). METHODS: Baseline data of three trials of overweight adults with type 2 diabetes (TD2, n = 111) with relatively well preserved kidney function were analyzed. Glomerular filtration rate (GFR), effective renal plasma flow (ERPF), and FF, were assessed with gold-standard clearance techniques. Systemic vascular resistance (SVR), an indicator of endothelial dysfunction, and pulse pressure (PP), a measure of arterial stiffness, were derived from continuous beat-to-beat monitoring. RESULTS: SVR related negatively to GFR (ß: -0.382, p < 0.001) and ERPF (ß: -0.475, p < 0.001), and positively to FF (ß:0.369, p < 0.001). Associations between SVR, ERPF and FF persisted after multivariable adjustments.. PP was negatively related to ERPF (ß: -0.252, p = 0.008), and positively to FF (ß: 0.257, p = 0.006), of which the latter remained significant in multivariable regression. CONCLUSION: Parameters of systemic vascular pathology, including endothelial dysfunction and arterial stiffness, relate to an adverse kidney hemodynamic profile characterized by glomerular hyperfiltration, which predisposes to the development of DKD.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Adult , Clinical Trials as Topic , Diabetes Mellitus, Type 2/drug therapy , Glomerular Filtration Rate/physiology , Hemodynamics/physiology , Humans , Kidney
13.
Diabetes Obes Metab ; 24(1): 115-124, 2022 01.
Article in English | MEDLINE | ID: mdl-34580975

ABSTRACT

AIM: To determine the effect of the dipeptidyl peptidase-4 inhibitor linagliptin on postprandial glomerular hyperfiltration compared with the sulphonylurea glimepiride in adults with type 2 diabetes (T2D). MATERIALS AND METHODS: In this predefined substudy within a randomized, double-blind, parallel-group, intervention trial, overweight people with T2D without renal impairment were treated with once-daily linagliptin 5 mg (N = 10) or glimepiride 1 mg (N = 13) as an add-on to metformin for 8 weeks. After a standardized liquid protein-rich meal, the glomerular filtration rate (GFR) and effective renal plasma flow were determined by inulin and para-aminohippuric acid clearance, respectively, based on timed urine sampling. Intrarenal haemodynamics were estimated using the Gomez equations. Glucoregulatory/vasoactive hormones, urinary pH and fractional excretions (FE) of sodium, potassium and urea were measured. RESULTS: Compared with glimepiride, linagliptin increased the postprandial filtration fraction (FF; mean difference 2.1%-point; P = .016) and estimated glomerular hydraulic pressure (mean difference 3.0 mmHg; P = .050), and tended to increase GFR (P = .08) and estimated efferent renal arteriolar resistance (RE ; P = .08) from baseline to week 8. No differences in FE were noted. Glimepiride reduced HbA1c more than linagliptin (mean difference -0.40%; P = .004), without between-group differences in time-averaged postprandial glucose levels. In the linagliptin group, change in FF correlated with change in mean arterial pressure (R = 0.807; P = .009) and time-averaged mean glucagon (R = 0.782; P = .008), but not with changes in glucose, insulin, intact glucagon-like peptide-1, renin or FENa . Change in glucagon was associated with change in RE (R = 0.830; P = .003). CONCLUSIONS: In contrast to our hypothesis, compared with glimepiride, linagliptin does not reduce postprandial hyperfiltration, yet appears to increase FF after meal ingestion by increasing blood pressure or RE .


Subject(s)
Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Adult , Blood Glucose , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases , Double-Blind Method , Glycated Hemoglobin , Hemodynamics , Humans , Hypoglycemic Agents/therapeutic use , Linagliptin/therapeutic use , Sulfonylurea Compounds , Treatment Outcome
14.
Front Endocrinol (Lausanne) ; 12: 786732, 2021.
Article in English | MEDLINE | ID: mdl-34858353

ABSTRACT

[This corrects the article DOI: 10.3389/fendo.2021.645563.].

15.
J Diabetes Metab Disord ; 20(2): 1155-1160, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34222054

ABSTRACT

Purpose: Inhibition of dipeptidyl peptidase (DPP-)4 could reduce coronavirus disease 2019 (COVID-19) severity by reducing inflammation and enhancing tissue repair beyond glucose lowering. We aimed to assess this in a prospective cohort study. Methods: We studied in 565 patients with type 2 diabetes in the CovidPredict Clinical Course Cohort whether use of a DPP-4 inhibitor prior to hospital admission due to COVID-19 was associated with improved clinical outcomes. Using crude analyses and propensity score matching (on age, sex and BMI), 28 patients using a DPP-4 inhibitor were identified and compared to non-users. Results: No differences were found in the primary outcome mortality (matched-analysis = odds-ratio: 0,94 [95% confidence interval: 0,69 - 1,28], p-value: 0,689) or any of the secondary outcomes (ICU admission, invasive ventilation, thrombotic events or infectious complications). Additional analyses comparing users of DPP-4 inhibitors with subgroups of non-users (subgroup 1: users of metformin and sulphonylurea; subgroup 2: users of any insulin combination), allowing to correct for diabetes severity, did not yield different results. Conclusions: We conclude that outpatient use of a DPP-4 inhibitor does not affect the clinical outcomes of patients with type 2 diabetes who are hospitalized because of COVID-19 infection.

16.
Front Endocrinol (Lausanne) ; 12: 645563, 2021.
Article in English | MEDLINE | ID: mdl-34305810

ABSTRACT

The glucagon-like peptide-1 receptor agonist (GLP-1RA) semaglutide is the most recently approved agent of this drug class, and the only GLP-1RA currently available as both subcutaneous and oral formulation. While GLP-1RAs effectively improve glycemic control and cause weight loss, potential safety concerns have arisen over the years. For semaglutide, such concerns have been addressed in the extensive phase 3 registration trials including cardiovascular outcome trials for both subcutaneous (SUSTAIN: Semaglutide Unabated Sustainability in Treatment of Type 2 Diabetes) and oral (PIONEER: Peptide InnOvatioN for the Early diabEtes tReatment) semaglutide and are being studied in further trials and registries, including real world data studies. In the current review we discuss the occurrence of adverse events associated with semaglutide focusing on hypoglycemia, gastrointestinal side effects, pancreatic safety (pancreatitis and pancreatic cancer), thyroid cancer, gallbladder events, cardiovascular aspects, acute kidney injury, diabetic retinopathy (DRP) complications and injection-site and allergic reactions and where available, we highlight potential underlying mechanisms. Furthermore, we discuss whether effects are specific for semaglutide or a class effect. We conclude that semaglutide induces mostly mild-to-moderate and transient gastrointestinal disturbances and increases the risk of biliary disease (cholelithiasis). No unexpected safety issues have arisen to date, and the established safety profile for semaglutide is similar to that of other GLP-1RAs where definitive conclusions for pancreatic and thyroid cancer cannot be drawn at this point due to low incidence of these conditions. Due to its potent glucose-lowering effect, patients at risk for deterioration of existing DRP should be carefully monitored if treated with semaglutide, particularly if also treated with insulin. Given the beneficial metabolic and cardiovascular actions of semaglutide, and the low risk for severe adverse events, semaglutide has an overall favorable risk/benefit profile for patient with type 2 diabetes.


Subject(s)
Cholelithiasis/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Glucagon-Like Peptides/adverse effects , Glucagon-Like Peptides/therapeutic use , Acute Kidney Injury/chemically induced , Animals , Blood Glucose/drug effects , Body Weight/drug effects , Cardiovascular System/drug effects , Clinical Trials as Topic , Clinical Trials, Phase III as Topic , Diabetic Retinopathy/drug therapy , Gallbladder/drug effects , Gastrointestinal Tract/drug effects , Glucagon-Like Peptide-1 Receptor/metabolism , Humans , Hypoglycemic Agents/administration & dosage , Insulin/therapeutic use , Nausea/chemically induced , Pancreas/drug effects , Pancreatic Neoplasms/chemically induced , Pancreatitis/chemically induced , Patient Safety , Peptides/chemistry , Thyroid Neoplasms/chemically induced , Time Factors
17.
Sci Rep ; 11(1): 10624, 2021 05 19.
Article in English | MEDLINE | ID: mdl-34012064

ABSTRACT

Glucagon-like peptide 1 receptor agonists have shown cardioprotective effects which have been suggested to be mediated through inhibition of oxidative stress. We investigated the effect of treatment with a glucagon-like peptide 1 receptor agonist (liraglutide) on oxidative stress measured as urinary nucleic acid oxidation in persons with type 2 diabetes. Post-hoc analysis of two independent, randomised, placebo-controlled and double-blinded clinical trials. In a cross-over study where persons with type 2 diabetes and microalbuminuria (LIRALBU, n = 32) received liraglutide (1.8 mg/day) or placebo for 12 weeks in random order, separated by 4 weeks of wash-out. In a parallel-grouped study where obese persons with type 2 diabetes (SAFEGUARD, n = 56) received liraglutide (1.8 mg/day), sitagliptin (100 mg/day) or placebo for 12 weeks. Endpoints were changes in the urinary markers of DNA oxidation (8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG)) and RNA oxidation [8-oxo-7,8-dihydroguanosine (8-oxoGuo)]. In LIRALBU, we observed no significant differences between treatment periods in urinary excretion of 8-oxodG [0.028 (standard error (SE): 0.17] nmol/mmol creatinine, p = 0.87) or of 8-oxoGuo [0.12 (0.12) nmol/mmol creatinine, p = 0.31]. In SAFEGUARD, excretion of 8-oxodG was not changed in the liraglutide group [2.8 (- 8.51; 15.49) %, p = 0.62] but a significant decline was demonstrated in the placebo group [12.6 (- 21.3; 3.1) %, p = 0.02], resulting in a relative increase in the liraglutide group compared to placebo (0.16 nmol/mmol creatinine, SE 0.07, p = 0.02). Treatment with sitagliptin compared to placebo demonstrated no significant difference (0.07 (0.07) nmol/mmol creatinine, p = 0.34). Nor were any significant differences for urinary excretion of 8-oxoGuo liraglutide vs placebo [0.09 (SE: 0.07) nmol/mmol creatinine, p = 0.19] or sitagliptin vs placebo [0.07 (SE: 0.07) nmol/mmol creatinine, p = 0.35] observed. This post-hoc analysis could not demonstrate a beneficial effect of 12 weeks of treatment with liraglutide or sitagliptin on oxidatively generated modifications of nucleic acid in persons with type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2/pathology , Liraglutide/pharmacology , Oxidative Stress , Sitagliptin Phosphate/pharmacology , 8-Hydroxy-2'-Deoxyguanosine/urine , Adult , Aged , Diabetes Mellitus, Type 2/urine , Female , Guanosine/analogs & derivatives , Guanosine/urine , Humans , Male , Middle Aged , Outcome Assessment, Health Care , Oxidative Stress/drug effects
18.
BMC Immunol ; 22(1): 27, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33849432

ABSTRACT

BACKGROUND: Food proteins differ in their allergenic potential. Currently, there is no predictive and validated bio-assay to evaluate the allergenicity of novel food proteins. The objective of this study was to investigate the potential of a human peripheral blood mononuclear cell (PBMC) gene expression assay to identify biomarkers to predict the allergenicity of legume proteins. RESULTS: PBMCs from healthy donors were exposed to weakly and strongly allergenic legume proteins (2S albumins, and 7S and 11S globulins from white bean, soybean, peanut, pea and lupine) in three experiments. Possible biomarkers for allergenicity were investigated by exposing PBMCs to a protein pair of weakly (white bean) and strongly allergenic (soybean) 7S globulins in a pilot experiment. Gene expression was measured by RNA-sequencing and differentially expressed genes were selected as biomarkers. 153 genes were identified as having significantly different expression levels to the 7S globulin of white bean compared to soybean. Inclusion of multiple protein pairs from 2S albumins (lupine and peanut) and 7S globulins (white bean and soybean) in a larger study, led to the selection of CCL2, CCL7, and RASD2 as biomarkers to distinguish weakly from strongly allergenic proteins. The relevance of these three biomarkers was confirmed by qPCR when PBMCs were exposed to a larger panel of weakly and strongly allergenic legume proteins (2S albumins, and 7S and 11S globulins from white bean, soybean, peanut, pea and lupine). CONCLUSIONS: The PBMC gene expression assay can potentially distinguish weakly from strongly allergenic legume proteins within a protein family, though it will be challenging to develop a generic method for all protein families from plant and animal sources. Graded responses within a protein family might be of more value in allergenicity prediction instead of a yes or no classification.


Subject(s)
Chemokine CCL2/metabolism , Chemokine CCL7/metabolism , Food Hypersensitivity/immunology , GTP-Binding Proteins/metabolism , Leukocytes, Mononuclear/physiology , 2S Albumins, Plant/immunology , Allergens/immunology , Antigens, Plant/immunology , Biomarkers/metabolism , Cells, Cultured , Chemokine CCL2/genetics , Chemokine CCL7/genetics , Fabaceae/immunology , GTP-Binding Proteins/genetics , Globulins/immunology , Humans , Immunoglobulin E/metabolism , Seed Storage Proteins/immunology , Sequence Analysis, RNA , Severity of Illness Index , Soybean Proteins/immunology , Transcriptome
19.
Toxicol Rep ; 8: 767-773, 2021.
Article in English | MEDLINE | ID: mdl-33854954

ABSTRACT

Predicting the allergenicity of novel proteins is challenging due to the absence of validated predictive methods and a well-defined reference set of proteins. The prevalence of sensitization could be a parameter to select reference proteins to characterize allergenic proteins. This study investigated whether the prevalence of sensitization of legume extracts and proteins can indeed be used for this purpose. A random sample of suspected food-allergic patients (n=106) was therefore selected. 10 extracts (processed and non-processed) and 18 individual proteins (2S albumins, 7S and 11S globulins) from black lentil, blue and white lupine, chickpea, faba bean, green lentil, pea, peanut, soybean, and white bean were isolated and the prevalence of sensitization and the intensity of IgE binding were evaluated. The prevalence of sensitization ranged from 5.7 % (faba bean and green lentil) to 14.2 % (peanut). The prevalence of sensitization for individual legume proteins ranged from 0.0 % for albumin 1 (pea) to 15.1 %-17.9 % for Ara h 1, 2, 3, and 6 (peanut). The prevalence of sensitization correlated strongly with the intensity of IgE binding for individual proteins (p < 0.05, ρ = 0.894), for extracts no correlation was found. The discovered ranking can be used to select reference proteins for the development and validation of predictive in vitro or in vivo assays for the assessment of the sensitizing potential.

20.
Microcirculation ; 28(6): e12700, 2021 08.
Article in English | MEDLINE | ID: mdl-33864418

ABSTRACT

OBJECTIVE: Diabetic kidney disease is a microvascular complication of diabetes. Here, we assessed the association between skin microvascular function and renal hemodynamic function in a cohort of well-phenotyped adults with type 2 diabetes (T2D). METHODS: We included 81 overweight/obese adults (age: 62 ± 8 years; BMI: 32 ± 4 kg/m2 ) with well-controlled T2D and no renal impairment. Skin microvascular function was assessed by nailfold capillary density in rest and after arterial occlusion (ie, peak capillary density). Renal hemodynamic functions (ie, measured glomerular filtration rate [mGFR], effective renal blood flow [ERBF], filtration fraction [FF], and effective renal vascular resistance [ERVR]) were assessed by combined inulin and para-aminohippurate clearances and blood pressure measurements. RESULTS: Skin capillary density was 45 ± 10 capillaries/mm2 at baseline and 57 ± 11 capillaries/mm2 during post-occlusive peak; mGFR averaged 108 ± 20 ml/min. In multivariable regression analyses, positive associations between capillary density during post-occlusive peak and mGFR (ß = 0.224; p = 0.022) and ERBF (ß = 0.203; p = 0.020) and a positive trend for hyperemia and mGFR (ß = 0.391; p = 0.053) were observed, while a negative association for post-occlusive capillary density with ERVR (ß = -0.196; p = 0.027) was found. CONCLUSION: These findings indicate that microvascular dysfunction in overweight adults with T2D is associated with lower mGFR and ERPF and higher ERVR. We hypothesize that increased renal vascular resistance may contribute to glomerular dysfunction due to impaired renal perfusion.


Subject(s)
Diabetes Mellitus, Type 2 , Aged , Cross-Sectional Studies , Diabetes Mellitus, Type 2/complications , Glomerular Filtration Rate , Hemodynamics , Humans , Kidney , Middle Aged , Overweight
SELECTION OF CITATIONS
SEARCH DETAIL
...