Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Nucleic Acids Res ; 51(11): 5396-5413, 2023 06 23.
Article in English | MEDLINE | ID: mdl-36971114

ABSTRACT

The deubiquitinating enzyme Ataxin-3 (ATXN3) contains a polyglutamine (PolyQ) region, the expansion of which causes spinocerebellar ataxia type-3 (SCA3). ATXN3 has multiple functions, such as regulating transcription or controlling genomic stability after DNA damage. Here we report the role of ATXN3 in chromatin organization during unperturbed conditions, in a catalytic-independent manner. The lack of ATXN3 leads to abnormalities in nuclear and nucleolar morphology, alters DNA replication timing and increases transcription. Additionally, indicators of more open chromatin, such as increased mobility of histone H1, changes in epigenetic marks and higher sensitivity to micrococcal nuclease digestion were detected in the absence of ATXN3. Interestingly, the effects observed in cells lacking ATXN3 are epistatic to the inhibition or lack of the histone deacetylase 3 (HDAC3), an interaction partner of ATXN3. The absence of ATXN3 decreases the recruitment of endogenous HDAC3 to the chromatin, as well as the HDAC3 nuclear/cytoplasm ratio after HDAC3 overexpression, suggesting that ATXN3 controls the subcellular localization of HDAC3. Importantly, the overexpression of a PolyQ-expanded version of ATXN3 behaves as a null mutant, altering DNA replication parameters, epigenetic marks and the subcellular distribution of HDAC3, giving new insights into the molecular basis of the disease.


Subject(s)
Ataxin-3 , Chromatin , DNA Replication , Humans , Ataxin-3/genetics , Ataxin-3/metabolism , Chromatin/genetics , DNA Damage , Machado-Joseph Disease/genetics , Repressor Proteins/metabolism
2.
Cells ; 11(16)2022 08 11.
Article in English | MEDLINE | ID: mdl-36010569

ABSTRACT

SETD8 is a histone methyltransferase that plays pivotal roles in several cellular functions, including transcriptional regulation, cell cycle progression, and genome maintenance. SETD8 regulates the recruitment of 53BP1 to sites of DNA damage by controlling histone H4K20 methylation. Moreover, SETD8 levels are tightly regulated in a cell cycle-dependent manner by ubiquitin-dependent proteasomal degradation. Here, we identified ubiquitin-specific peptidase 29, USP29, as a novel regulator of SETD8. Depletion of USP29 leads to decreased SETD8 protein levels, an effect that is independent of the cell cycle. We demonstrate that SETD8 binds to USP29 in vivo, and this interaction is dependent on the catalytic activity of USP29. Wildtype USP29 can deubiquitinate SETD8 in vivo, indicating that USP29 directly regulates SETD8 protein levels. Importantly, USP29 knockdown inhibits the irradiation-induced increase in H4K20 monomethylation, thereby preventing focus formation of 53BP1 in response to DNA damage. Lastly, depletion of USP29 increases the cellular sensitivity to irradiation. These results demonstrate that USP29 is critical for the DNA damage response and cell survival, likely by controlling protein levels of SETD8.


Subject(s)
DNA Damage , Histone-Lysine N-Methyltransferase , Gene Expression Regulation , Histone-Lysine N-Methyltransferase/genetics , Methylation , Protein Processing, Post-Translational
3.
J Vet Intern Med ; 35(2): 1041-1051, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33650720

ABSTRACT

BACKGROUND: Ubiquitin-specific protease 7 (USP7) belongs to the group of deubiquitinating enzymes (DUBs), which remove ubiquitin which controls various cellular processes such as chromosome segregation, DNA repair, gene expression, protein localization, kinase activity, protein degradation, cell cycle progression, and apoptosis. It is critical for several important functions in the cell, and therefore dysregulation of USP7 can contribute to tumorigenesis. OBJECTIVES: Alterations in the USP7 protein have been identified in various malignancies of humans. Our aim was to examine whether USP7 could be a potential therapeutic target in hematopoietic cancers of dogs. METHODS: The expression level of USP7 in lymphocytes from healthy dogs and canine lymphoma cells was determined, and the effect of USP7 inhibition on the vital functions of canine cancer cells was examined. RESULTS: We showed that USP7 was overexpressed in lymphomas in dogs. The USP7 inhibitor P5091 has selective cytotoxic activity in canine lymphoma and leukemia cell lines. Our results indicate that inhibition of USP7 leads to a disruption of cell cycle progression, and triggers DNA damage and apoptosis. The observed proapoptotic effect of the USP7 inhibitor most likely is not dependent on the p53 pathway. CONCLUSIONS AND CLINICAL IMPORTANCE: Our results suggest that USP7 could be explored as a potential therapeutic target in dogs with lymphoma. The effectiveness of USP7 inhibition in malignant cells is predicted to be independent of their p53 status.


Subject(s)
Antineoplastic Agents , Dog Diseases , Hematologic Neoplasms , Animals , Antineoplastic Agents/therapeutic use , Apoptosis , Cell Line, Tumor , Dog Diseases/drug therapy , Dogs , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/veterinary , Ubiquitin-Specific Peptidase 7
4.
Biochem Biophys Res Commun ; 543: 45-49, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33515911

ABSTRACT

In order to control the COVID-19 pandemic caused by SARS-CoV-2 infection, serious progress has been made to identify infected patients and to detect patients with a positive immune response against the virus. Currently, attempts to generate a vaccine against the coronavirus are ongoing. To understand SARS-CoV-2 immunoreactivity, we compared the IgG antibody response against SARS-CoV-2 in infected versus control patients by dot blot using recombinant viral particle proteins: N (Nucleocapsid), M (Membrane) and S (Spike). In addition, we used different protein fragments of the N and S protein to map immune epitopes. Most of the COVID-19 patients presented a specific immune response against the full length and fragments of the N protein and, to lesser extent, against a fragment containing amino acids 300-685 of the S protein. In contrast, immunoreactivity against other S protein fragments or the M protein was low. This response is specific for COVID-19 patients as very few of the control patients displayed immunoreactivity, likely reflecting an immune response against other coronaviruses. Altogether, our results may help develop method(s) for measuring COVID-19 antibody response, selectivity of methods detecting such SARS-CoV-2 antibodies and vaccine development.


Subject(s)
COVID-19/immunology , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Coronavirus M Proteins/genetics , Coronavirus M Proteins/immunology , Coronavirus Nucleocapsid Proteins/genetics , Humans , Immune Sera/immunology , Immunity, Humoral , Immunoblotting , Immunoglobulin G/blood , Phosphoproteins/genetics , Phosphoproteins/immunology , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Virion/immunology
5.
Commun Biol ; 3(1): 593, 2020 10 21.
Article in English | MEDLINE | ID: mdl-33087841

ABSTRACT

High expression of centrosomal protein CEP55 has been correlated with clinico-pathological parameters across multiple human cancers. Despite significant in vitro studies and association of aberrantly overexpressed CEP55 with worse prognosis, its causal role in vivo tumorigenesis remains elusive. Here, using a ubiquitously overexpressing transgenic mouse model, we show that Cep55 overexpression causes spontaneous tumorigenesis and accelerates Trp53+/- induced tumours in vivo. At the cellular level, using mouse embryonic fibroblasts (MEFs), we demonstrate that Cep55 overexpression induces proliferation advantage by modulating multiple cellular signalling networks including the hyperactivation of the Pi3k/Akt pathway. Notably, Cep55 overexpressing MEFs have a compromised Chk1-dependent S-phase checkpoint, causing increased replication speed and DNA damage, resulting in a prolonged aberrant mitotic division. Importantly, this phenotype was rescued by pharmacological inhibition of Pi3k/Akt or expression of mutant Chk1 (S280A) protein, which is insensitive to regulation by active Akt, in Cep55 overexpressing MEFs. Moreover, we report that Cep55 overexpression causes stabilized microtubules. Collectively, our data demonstrates causative effects of deregulated Cep55 on genome stability and tumorigenesis which have potential implications for tumour initiation and therapy development.


Subject(s)
Cell Cycle Proteins/genetics , Cell Transformation, Neoplastic/genetics , Gene Expression , Genomic Instability , Animals , Biomarkers, Tumor , Biopsy , Cell Cycle Proteins/metabolism , Cell Line , Cell Transformation, Neoplastic/metabolism , Checkpoint Kinase 1/metabolism , Disease Susceptibility , Fibroblasts/metabolism , Genotype , Immunohistochemistry , Karyotype , Lymph Nodes/metabolism , Lymph Nodes/pathology , Mice , Mice, Transgenic , Microtubules/metabolism , Mitosis , Protein Stability , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Stress, Physiological , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
6.
Cell Cycle ; 19(17): 2083-2093, 2020 09.
Article in English | MEDLINE | ID: mdl-32730133

ABSTRACT

Chromatin plays a pivotal role in regulating the DNA damage response and during DNA double-strand break repair. Upon the generation of DNA breaks, the chromatin structure is altered by post-translational modifications of histones and chromatin remodeling. How the chromatin structure, and the epigenetic information that it carries, is reestablished after the completion of DNA break repair remains unclear though. Also, how these processes influence recovery of the cell cycle remains poorly understood. We recently performed a reverse genetic screen for novel chromatin regulators that control checkpoint recovery after DNA damage. Here we discuss the implications of PHD finger protein 6 (PHF6) and additional candidates from the NuA4 ATPase-dependent chromatin-remodeling complex and the Cohesin complex, required for sister chromatid cohesion, in DNA repair and checkpoint recovery in more detail. In addition, the potential role of this novel function of PHF6 in cancer development and treatment is reviewed.


Subject(s)
Chromatin/metabolism , DNA Repair , G2 Phase Cell Cycle Checkpoints , Animals , Cell Cycle Proteins/metabolism , DNA Damage , Disease , Humans
7.
Nucleic Acids Res ; 48(9): 4915-4927, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32232336

ABSTRACT

Post-translational histone modifications and chromatin remodelling play a critical role controlling the integrity of the genome. Here, we identify histone lysine demethylase PHF2 as a novel regulator of the DNA damage response by regulating DNA damage-induced focus formation of 53BP1 and BRCA1, critical factors in the pathway choice for DNA double strand break repair. PHF2 knockdown leads to impaired BRCA1 focus formation and delays the resolution of 53BP1 foci. Moreover, irradiation-induced RPA phosphorylation and focus formation, as well as localization of CtIP, required for DNA end resection, to sites of DNA lesions are affected by depletion of PHF2. These results are indicative of a defective resection of double strand breaks and thereby an impaired homologous recombination upon PHF2 depletion. In accordance with these data, Rad51 focus formation and homology-directed double strand break repair is inhibited in cells depleted for PHF2. Importantly, we demonstrate that PHF2 knockdown decreases CtIP and BRCA1 protein and mRNA levels, an effect that is dependent on the demethylase activity of PHF2. Furthermore, PHF2-depleted cells display genome instability and are mildly sensitive to the inhibition of PARP. Together these results demonstrate that PHF2 promotes DNA repair by homologous recombination by controlling CtIP-dependent resection of double strand breaks.


Subject(s)
DNA Breaks, Double-Stranded , Histone Demethylases/physiology , Homeodomain Proteins/physiology , Recombinational DNA Repair , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Cell Line , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Gene Expression Regulation , Genomic Instability , HeLa Cells , Histone Demethylases/metabolism , Homeodomain Proteins/metabolism , Humans
8.
FEBS J ; 286(3): 441-455, 2019 02.
Article in English | MEDLINE | ID: mdl-29931808

ABSTRACT

Claspin was discovered as a Chk1-interacting protein necessary for Chk1 phosphorylation and activation by the upstream kinase, ATR, in response to DNA synthesis inhibition in Xenopus oocyte extracts. Subsequent investigations have defined a molecular model in which Claspin acts as an adaptor or scaffold protein to facilitate activation of Chk1 by ATR within a multiprotein complex that forms on single-stranded DNA at stalled replication forks and sites of DNA damage. Interestingly, Claspin is an unstable protein whose degradation via the proteasome is tightly regulated via ubiquitination and controlled by multiple ubiquitin ligases and deubiquitinases. As a result, Claspin levels fluctuate during the cell cycle, contributing to the regulation of checkpoint proficiency and playing a key role in terminating checkpoint-mediated cell cycle arrest. In addition to its role in signalling genotoxic stress, Claspin is required to maintain normal rates of replication fork progression during unperturbed DNA replication and may contribute to the regulation of replication origin firing. Consistent with this, Claspin can bind directly to DNA, with particular affinity for branched or forked molecules, and it interacts with multiple protein components of the replisome. As expected for a protein with key roles in checkpoint signalling and genome duplication, aberrations of Claspin expression and structure have been observed in cancer. Claspin is furthermore targeted to facilitate viral replication and plays a role in suppressing cellular DNA synthesis in response to nongenotoxic endoplasmic reticulum stress. Here, we review the functions and regulation of Claspin with a focus on areas of active research.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cell Cycle/genetics , DNA Replication , Gene Expression Regulation, Neoplastic , Neoplasms/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Checkpoint Kinase 1/genetics , Checkpoint Kinase 1/metabolism , DNA Breaks, Single-Stranded , DNA, Single-Stranded , Genome, Human , Genomic Instability , Humans , Neoplasms/metabolism , Neoplasms/pathology , Proteasome Endopeptidase Complex/metabolism , Signal Transduction , Ubiquitination , Xenopus laevis/genetics , Xenopus laevis/growth & development , Xenopus laevis/metabolism
9.
Sci Rep ; 8(1): 17536, 2018 12 03.
Article in English | MEDLINE | ID: mdl-30510197

ABSTRACT

The DNA damage-activated protein kinase Chk1 is known to undergo auto-phosphorylation, however the sites and functional significance of this modification remain poorly understood. We have identified two novel Chk1 auto-phosphorylation sites, threonines 378 and 382 (T378/382), located in a highly conserved motif within the C-terminal Kinase Associated 1 (KA1) domain. T378/382 occur within optimal consensus Chk1 phosphorylation motifs and substitution with phospho-mimetic aspartic acid residues results in a constitutively active mutant Chk1 kinase (Chk1-DD) that arrests cell cycle progression in G2 phase of the cell cycle in the absence of DNA damage. Remarkably, the mutant Chk1-DD protein is also subject to very rapid proteasomal degradation, with a half-life approximately one tenth that of wild-type Chk1. Consistent with this, T378/T382 auto-phosphorylation also accelerates the proteasomal degradation of constitutively active Chk1 KA1 domain structural mutants. T378/382 auto-phosphorylation and accelerated degradation of wild-type Chk1 occurs at low levels during unperturbed growth, but surprisingly, is not augmented in response to genotoxic stress. Taken together, these observations demonstrate that Chk1 T378/T382 auto-phosphorylation within the KA1 domain is linked to kinase activation and rapid proteasomal degradation, and suggest a non-canonical mechanism of regulation.


Subject(s)
Checkpoint Kinase 1/metabolism , G2 Phase Cell Cycle Checkpoints , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Amino Acid Motifs , Cell Line, Transformed , Checkpoint Kinase 1/genetics , Humans , Mutation , Phosphorylation , Proteasome Endopeptidase Complex/genetics , Protein Domains
10.
Cells ; 7(10)2018 Sep 20.
Article in English | MEDLINE | ID: mdl-30241373

ABSTRACT

Eukaryotic cells divide by accomplishing a program of events in which the replication of the genome is a fundamental part. To ensure all cells have an accurate copy of the genome, DNA replication occurs only once per cell cycle and is controlled by numerous pathways. A key step in this process is the initiation of DNA replication in which certain regions of DNA are marked as competent to replicate. Moreover, initiation of DNA replication needs to be coordinated with other cell cycle processes. At the molecular level, initiation of DNA replication relies, among other mechanisms, upon post-translational modifications, including the conjugation and hydrolysis of ubiquitin. An example is the precise control of the levels of the DNA replication initiation protein Cdt1 and its inhibitor Geminin by ubiquitin-mediated proteasomal degradation. This control ensures that DNA replication occurs with the right timing during the cell cycle, thereby avoiding re-replication events. Here, we review the events that involve ubiquitin signalling during DNA replication initiation, and how they are linked to human disease.

12.
Bioessays ; 38(9): 863-8, 2016 09.
Article in English | MEDLINE | ID: mdl-27374980

ABSTRACT

DNA replication is both highly conserved and controlled. Problematic DNA replication can lead to genomic instability and therefore carcinogenesis. Numerous mechanisms work together to achieve this tight control and increasing evidence suggests that post-translational modifications (phosphorylation, ubiquitination, SUMOylation) of DNA replication proteins play a pivotal role in this process. Here we discuss such modifications in the light of a recent article that describes a novel role for the deubiquitinase (DUB) USP7/HAUSP in the control of DNA replication. USP7 achieves this function by an unusual and novel mechanism, namely deubiquitination of SUMOylated proteins at the replication fork, making USP7 also a SUMO DUB (SDUB). This work extends previous observations of increased levels of SUMO and low levels of ubiquitin at the on-going replication fork. Here, we discuss this novel study, its contribution to the DNA replication and genomic stability field and what questions arise from this work.


Subject(s)
DNA Replication , Genomic Instability , Ubiquitin Thiolesterase/metabolism , Sumoylation
13.
FEBS J ; 282(19): 3681-92, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26216057

ABSTRACT

Checkpoint kinase 1 (Chk1) is a master regulator of the DNA damage and replication checkpoints in vertebrate cells. When activated via phosphorylation by its upstream regulatory kinase, ATR, Chk1 prevents cells with damaged or incompletely replicated DNA from entering mitosis, and acts to stabilize stalled replication forks and suppress replication origin firing when DNA synthesis is inhibited. Chk1 blocks mitosis by maintaining high levels of inhibitory tyrosine phosphorylation of the mitotic cyclin-dependent kinase 1; however, the mechanisms that underlie replication fork stabilization and suppression of origin firing are less well defined. Although Chk1 function is evidently acutely regulated during these responses, how this occurs at the molecular level is incompletely understood. Recent evidence that Chk1 contains a 'kinase-associated 1' domain within its regulatory C-terminal region promises new insights. Additional modifications catalysed by other protein kinases, such as cyclin-dependent kinase 1, Akt, and RSK, can combine with ubiquitylation to regulate Chk1 subcellular localization and protein stability. Interestingly, it is clear that Chk1 has less well-defined functions in homologous recombination, chromatin modification, gene expression, spindle checkpoint proficiency, and cytokinesis. Here, we provide an overview of Chk1 regulation and functions, with an emphasis on unresolved questions that merit further research.


Subject(s)
DNA Replication , Protein Kinases/chemistry , Protein Kinases/metabolism , Checkpoint Kinase 1 , DNA Damage , Enzyme Activation , Genomic Instability , Mitosis , Protein Kinases/genetics , Protein Structure, Tertiary
14.
Sci Rep ; 5: 10856, 2015 Jun 03.
Article in English | MEDLINE | ID: mdl-26039276

ABSTRACT

The Chk1 protein kinase is activated in response to DNA damage through ATR-mediated phosphorylation at multiple serine-glutamine (SQ) residues within the C-terminal regulatory domain, however the molecular mechanism is not understood. Modelling indicates a high probability that this region of Chk1 contains a kinase-associated 1 (KA1) domain, a small, compact protein fold found in multiple protein kinases including SOS2, AMPK and MARK3. We introduced mutations into Chk1 designed to disrupt specific structural elements of the predicted KA1 domain. Remarkably, six of seven Chk1 KA1 mutants exhibit constitutive biological activity (Chk1-CA) in the absence of DNA damage, profoundly arresting cells in G2 phase of the cell cycle. Cell cycle arrest induced by selected Chk1-CA mutants depends on kinase catalytic activity, which is increased several-fold compared to wild-type, however phosphorylation of the key ATR regulatory site serine 345 (S345) is not required. Thus, mutations targeting the putative Chk1 KA1 domain confer constitutive biological activity by circumventing the need for ATR-mediated positive regulatory phosphorylation.


Subject(s)
DNA Damage , Mutation , Protein Interaction Domains and Motifs/genetics , Protein Kinases/genetics , Protein Kinases/metabolism , Amino Acid Sequence , Catalysis , Cell Proliferation , Checkpoint Kinase 1 , Enzyme Activation , G2 Phase Cell Cycle Checkpoints/genetics , Humans , Models, Biological , Molecular Sequence Data , Phosphorylation , Protein Kinases/chemistry , Son of Sevenless Proteins/chemistry , Son of Sevenless Proteins/genetics , Son of Sevenless Proteins/metabolism
15.
Cell Cycle ; 13(24): 3921-6, 2014.
Article in English | MEDLINE | ID: mdl-25483066

ABSTRACT

Chk1, an essential checkpoint kinase in the DNA damage response pathway (DDR), is tightly regulated by both ATR-dependent phosphorylation and proteasome-mediated degradation. Here we identify ubiquitin hydrolase USP7 as a novel regulator of Chk1 protein stability. USP7 was shown before to regulate other DDR proteins such as p53, Hdm2 and Claspin, an adaptor protein in the ATR-Chk1 pathway required for Chk1 activation. Depletion or inhibition of USP7 leads to lower Chk1 levels. The decreased Chk1 protein after USP7 knock down cannot be rescued by simultaneously elevating Claspin levels, demonstrating that the effect of USP7 on Chk1 is independent of its known effect on Claspin. Conversely, overexpression of USP7 wild type, but not a catalytic mutant version, elevates Chk1 levels and increases the half-life of Chk1 protein. Importantly, wild type, but not catalytic mutant USP7 can deubiquitinate Chk1 in vivo and in vitro, confirming that USP7 directly regulates Chk1 protein levels. Finally we show that USP7 catalytic mutant is (mono-)ubiquitinated, which suggests auto-deubiquitination by this ubiquitin hydrolase, possibly important for its regulation.


Subject(s)
Protein Kinases/metabolism , Ubiquitin Thiolesterase/metabolism , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Line, Tumor , Checkpoint Kinase 1 , HEK293 Cells , Humans , Protein Stability , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/metabolism , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/genetics , Ubiquitin-Specific Peptidase 7 , Ubiquitination
17.
Mol Oncol ; 8(5): 884-93, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24704006

ABSTRACT

A crucial event in the DNA damage response is the phosphorylation and subsequent ubiquitination of H2AX, required for the recruitment of proteins involved in DNA repair. Here we identify a novel regulator of this process, the ubiquitin hydrolase Dub3. Overexpression of wild type, but not catalytic inactive, Dub3 decreases the DNA damage-induced mono-ubiquitination of H2A(X) whereas downregulation of Dub3 has the opposite effect. Dub3 overexpression abrogates focus formation of 53BP1 and BRCA1 in response to genotoxic stress. However, focus formation of MDC1 and γH2AX, earlier events in this response, are unaffected by Dub3 overexpression. We show that Dub3 counteracts H2AX E3 ligases RNF8 and RNF168. Moreover, Dub3 and H2AX interact and Dub3 deubiquitinates H2AX in vitro. Importantly, overexpression of Dub3 delays H2AX dephosphorylation and recovery of MDC1 focus formation at later time points after DNA damage, whereas H2AX dephosphorylation at later time points is faster after Dub3 depletion. Altogether these results show that Dub3 regulates a correct DNA damage response by controlling H2AX ubiquitination.


Subject(s)
DNA Damage , DNA-Binding Proteins/metabolism , Endopeptidases/metabolism , Histones/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , BRCA1 Protein/metabolism , Cell Line , Humans , Signal Transduction , Ubiquitin/metabolism
18.
J Cell Sci ; 126(Pt 9): 1923-30, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23447674

ABSTRACT

In response to UV light, single-stranded DNA intermediates coated with replication protein A (RPA) are generated, which trigger the ATR-Chk1 checkpoint pathway. Recruitment and/or activation of several checkpoint proteins at the damaged sites is important for the subsequent cell cycle arrest. Surprisingly, upon UV irradiation, Rad9 and RPA only minimally accumulate at DNA lesions in G2 phase, suggesting that only a few single-stranded DNA intermediates are generated. Also, little phosphorylated Chk1 is observed in G2 phase after UV-irradiation, and UV light fails to elicit efficient accumulation of typical DNA damage response proteins at sites of damage in this phase. By contrast, p38 MAPK is phosphorylated in G2 phase cells after UV damage. Interestingly, despite the lack of an obvious activation of the ATR-Chk1 pathway, only the combined inhibition of the ATR- and p38-dependent pathways results in a complete abrogation of the UV-induced G2/M arrest. This suggests that UV light induces less hazardous lesions in G2 phase or that lesions created in this phase are less efficiently processed, resulting in a low activation of the ATR-Chk1 pathway. UV-induced G2 checkpoint activation in this situation therefore relies on signalling via the p38 MAPK and ATR-Chk1 signalling cascades.


Subject(s)
Cell Cycle Proteins/metabolism , G2 Phase Cell Cycle Checkpoints/radiation effects , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/radiation effects , Ultraviolet Rays , p38 Mitogen-Activated Protein Kinases/metabolism , Ataxia Telangiectasia Mutated Proteins , Cell Cycle Proteins/genetics , Checkpoint Kinase 1 , DNA Breaks, Single-Stranded/radiation effects , G2 Phase Cell Cycle Checkpoints/genetics , HeLa Cells , Humans , Phosphorylation/genetics , Phosphorylation/radiation effects , Protein Kinases/genetics , Protein Serine-Threonine Kinases/genetics , Replication Protein A/genetics , Replication Protein A/metabolism , Signal Transduction/genetics , p38 Mitogen-Activated Protein Kinases/genetics
19.
PLoS One ; 8(2): e56623, 2013.
Article in English | MEDLINE | ID: mdl-23418588

ABSTRACT

The transcription/translation feedback loop-based molecular oscillator underlying the generation of circadian gene expression is preserved in almost all organisms. Interestingly, the animal circadian clock proteins CRYPTOCHROME (CRY), PERIOD (PER) and TIMELESS (TIM) are strongly conserved at the amino acid level through evolution. Within this evolutionary frame, TIM represents a fascinating puzzle. While Drosophila contains two paralogs, dTIM and dTIM2, acting in clock/photoreception and chromosome integrity/photoreception respectively, mammals contain only one TIM homolog. Whereas TIM has been shown to regulate replication termination and cell cycle progression, its functional link to the circadian clock is under debate. Here we show that RNAi-mediated knockdown of TIM in NIH3T3 and U2OS cells shortens the period by 1 hour and diminishes DNA damage-dependent phase advancing. Furthermore, we reveal that the N-terminus of TIM is sufficient for interaction with CRY1 and CHK1 as well for homodimerization, and the C-terminus is necessary for nuclear localization. Interestingly, the long TIM isoform (l-TIM), but not the short (s-TIM), interacts with CRY1 and both proteins can reciprocally regulate their nuclear translocation in transiently transfected COS7 cells. Finally, we demonstrate that co-expression of PER2 abolishes the formation of the TIM/CRY1 complex through affinity binding competition to the C-terminal tail of CRY1. Notably, the presence of the latter protein region evolutionarily and structurally distinguishes mammalian from insect CRYs. We propose that the dynamic interaction between these three proteins could represent a post-translational aspect of the mammalian circadian clock that is important for its pace and adaption to external stimuli, such as DNA damage and/or light.


Subject(s)
Cell Cycle Proteins/metabolism , Circadian Clocks/physiology , DNA Damage , Intracellular Signaling Peptides and Proteins/metabolism , Animals , Blotting, Western , COS Cells , Cell Cycle Proteins/genetics , Cell Line, Tumor , Cells, Cultured , Chlorocebus aethiops , Circadian Clocks/genetics , Cryptochromes/genetics , Cryptochromes/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Mice , Mice, Knockout , Models, Biological , NIH 3T3 Cells , Nuclear Localization Signals/genetics , Protein Binding , RNA Interference , Time Factors
20.
Cell Cycle ; 11(4): 715-20, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22374670

ABSTRACT

Tight regulation of p53 is essential for its central role in maintaining genome stability and tumor prevention. Here, EDD/ UBR5/hHyd, hereafter called EDD, is identified as a novel regulator of p53. Downregulation of EDD results in elevated p53 protein levels both in transformed and untransformed cells. Concomitant with a rise in p53, the levels of p21, a critical p53 target, are also elevated in these conditions. Surprisingly, EDD knockdown does not affect p53 protein stability, and p53 mRNA levels do not increase significantly upon EDD depletion. Consistent with the function of p53, EDD downregulation triggers a senescent phenotype in fibroblasts at later time points. In addition, the increased p53 levels upon EDD depletion cause a G(1) arrest, as co-depletion of EDD and p53 completely rescues this effect on cell cycle progression.


Subject(s)
Tumor Suppressor Protein p53/metabolism , Ubiquitin-Protein Ligases/metabolism , Blotting, Western , Cell Cycle/genetics , Cell Cycle/physiology , Cell Cycle Checkpoints/genetics , Cell Cycle Checkpoints/physiology , Cell Line , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Flow Cytometry , G1 Phase/genetics , G1 Phase/physiology , Humans , Reverse Transcriptase Polymerase Chain Reaction , Tumor Suppressor Protein p53/genetics , Ubiquitin-Protein Ligases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...