Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Affect Disord ; 355: 157-166, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38527529

ABSTRACT

BACKGROUND: Diet largely impacts the gut microbiota, and may affect mental and somatic health via the gut-brain axis. As such, the relationship between diet and the microbiota in Bipolar Disorder (BD) could be of importance, but has not been studied before. The aim was therefore to assess whether dietary quality is associated with the gut microbiota diversity in patients with recently diagnosed BD, and whether changes occur in dietary quality and microbiota diversity during their first year of treatment. METHODS: Seventy recently (<1 year) diagnosed patients with BD were included in the "Bipolar Netherlands Cohort" (BINCO), and a total of 45 participants were assessed after one year. A 203-item Food Frequency Questionnaire (FFQ) data yielded the Dutch Healthy index (DHD-15), and the microbiota composition and diversity of fecal samples were characterized by 16S rRNA gene amplicon sequencing at baseline and 1-year follow-up. Associations and changes over time were analyzed using multivariate regression analyses and t-tests for paired samples. RESULTS: Included patients had a mean age of 34.9 years (SD ± 11.2), and 58.6 % was female. Alpha diversity (Shannon diversity index), richness (Chao1 index) and evenness (Pielou's Evenness Index) were positively associated with the DHD-15 total score, after adjustment for sex, age and educational level (beta = 0.55; P < 0.001, beta = 0.39; P = 0.024, beta = 0.54; P = 0.001 respectively). The positive correlations were largely driven by the combined positive effect of fish, beans, fruits and nuts, and inverse correlations with alcohol and processed meats. No significant changes were found in DHD-15 total score, nor in microbiota diversity, richness and evenness indexes during one year follow-up and regular treatment. CONCLUSION: A healthy and varied diet is associated with the diversity of the microbiota in BD patients. Its potential consequences for maintaining mood stability and overall health should be studied further.


Subject(s)
Bipolar Disorder , Gastrointestinal Microbiome , Humans , Female , Adult , Dietary Patterns , Netherlands , RNA, Ribosomal, 16S/genetics , Diet , Gastrointestinal Microbiome/genetics
2.
J Clin Microbiol ; 60(2): e0173721, 2022 02 16.
Article in English | MEDLINE | ID: mdl-34911367

ABSTRACT

Clostridioides difficile is the most common cause of antibiotic-associated gastrointestinal infections. Capillary electrophoresis (CE)-PCR ribotyping is currently the gold standard for C. difficile typing but lacks the discriminatory power to study transmission and outbreaks in detail. New molecular methods have the capacity to differentiate better and provide standardized and interlaboratory exchangeable data. Using a well-characterized collection of diverse strains (N = 630; 100 unique ribotypes [RTs]), we compared the discriminatory power of core genome multilocus sequence typing (cgMLST) (SeqSphere and EnteroBase), whole-genome MLST (wgMLST) (EnteroBase), and single-nucleotide polymorphism (SNP) analysis. A unique cgMLST profile (more than six allele differences) was observed in 82 of 100 RTs, indicating that cgMLST could distinguish most, but not all, RTs. Application of cgMLST in two outbreak settings with RT078 and RT181 (known to have low intra-RT allele differences) showed no distinction between outbreak and nonoutbreak strains in contrast to wgMLST and SNP analysis. We conclude that cgMLST has the potential to be an alternative to CE-PCR ribotyping. The method is reproducible, easy to standardize, and offers higher discrimination. However, adjusted cutoff thresholds and epidemiological data are necessary to recognize outbreaks of some specific RTs. We propose to use an allelic threshold of three alleles to identify outbreaks.


Subject(s)
Clostridioides difficile , Clostridioides , Clostridioides difficile/genetics , Genome, Bacterial/genetics , Humans , Multilocus Sequence Typing/methods , Polymerase Chain Reaction , Ribotyping
4.
FEMS Microbiol Lett ; 366(11)2019 06 01.
Article in English | MEDLINE | ID: mdl-31253991

ABSTRACT

Twitter is one of the most popular social media networks that, in recent years, has been increasingly used by researchers as a platform to share science and discuss ongoing work. Despite its popularity, Twitter is not commonly used as a medium to teach science. Here, we summarize the results of #EUROmicroMOOC: the first worldwide Microbiology Massive Open Online Course taught in English using Twitter. Content analytics indicated that more than 3 million users saw posts with the hashtag #EUROmicroMOOC, which resulted in over 42 million Twitter impressions worldwide. These analyses demonstrate that free Microbiology MOOCs shared on Twitter are valuable educational tools that reach broad audiences throughout the world. We also describe our experience teaching an entire Microbiology course using Twitter and provide recommendations when using social media to communicate science to a broad audience.


Subject(s)
Microbiology , Social Media , Communication , Information Dissemination/methods , Social Networking
5.
Leukemia ; 30(9): 1832-43, 2016 09.
Article in English | MEDLINE | ID: mdl-27174491

ABSTRACT

We identified mutations in the IL7Ra gene or in genes encoding the downstream signaling molecules JAK1, JAK3, STAT5B, N-RAS, K-RAS, NF1, AKT and PTEN in 49% of patients with pediatric T-cell acute lymphoblastic leukemia (T-ALL). Strikingly, these mutations (except RAS/NF1) were mutually exclusive, suggesting that they each cause the aberrant activation of a common downstream target. Expressing these mutant signaling molecules-but not their wild-type counterparts-rendered Ba/F3 cells independent of IL3 by activating the RAS-MEK-ERK and PI3K-AKT pathways. Interestingly, cells expressing either IL7Ra or JAK mutants are sensitive to JAK inhibitors, but respond less robustly to inhibitors of the downstream RAS-MEK-ERK and PI3K-AKT-mTOR pathways, indicating that inhibiting only one downstream pathway is not sufficient. Here, we show that inhibiting both the MEK and PI3K-AKT pathways synergistically prevents the proliferation of BaF3 cells expressing mutant IL7Ra, JAK and RAS. Furthermore, combined inhibition of MEK and PI3K/AKT was cytotoxic to samples obtained from 6 out of 11 primary T-ALL patients, including 1 patient who had no mutations in the IL7R signaling pathway. Taken together, these results suggest that the potent cytotoxic effects of inhibiting both MEK and PI3K/AKT should be investigated further as a therapeutic option using leukemia xenograft models.


Subject(s)
Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Phosphoinositide-3 Kinase Inhibitors , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Receptors, Interleukin-7/metabolism , Signal Transduction/drug effects , Animals , Cell Proliferation/drug effects , Humans , Mice , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Protein Kinase Inhibitors/pharmacology , Receptors, Interleukin-7/antagonists & inhibitors , Transfection , Tumor Cells, Cultured
6.
Leukemia ; 24(12): 2014-22, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20861909

ABSTRACT

Aberrant activation of the NOTCH1 pathway by inactivating and activating mutations in NOTCH1 or FBXW7 is a frequent phenomenon in T-cell acute lymphoblastic leukemia (T-ALL). We retrospectively investigated the relevance of NOTCH1/FBXW7 mutations for pediatric T-ALL patients enrolled on Dutch Childhood Oncology Group (DCOG) ALL7/8 or ALL9 or the German Co-Operative Study Group for Childhood Acute Lymphoblastic Leukemia study (COALL-97) protocols. NOTCH1-activating mutations were identified in 63% of patients. NOTCH1 mutations affected the heterodimerization, the juxtamembrane and/or the PEST domains, but not the RBP-J-κ-associated module, the ankyrin repeats or the transactivation domain. Reverse-phase protein microarray data confirmed that NOTCH1 and FBXW7 mutations resulted in increased intracellular NOTCH1 levels in primary T-ALL biopsies. Based on microarray expression analysis, NOTCH1/FBXW7 mutations were associated with activation of NOTCH1 direct target genes including HES1, DTX1, NOTCH3, PTCRA but not cMYC. NOTCH1/FBXW7 mutations were associated with TLX3 rearrangements, but were less frequently identified in TAL1- or LMO2-rearranged cases. NOTCH1-activating mutations were less frequently associated with mature T-cell developmental stage. Mutations were associated with a good initial in vivo prednisone response, but were not associated with a superior outcome in the DCOG and COALL cohorts. Comparing our data with other studies, we conclude that the prognostic significance for NOTCH1/FBXW7 mutations is not consistent and may depend on the treatment protocol given.


Subject(s)
Cell Cycle Proteins/genetics , F-Box Proteins/genetics , Mutation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Prednisone/therapeutic use , Receptor, Notch1/genetics , Ubiquitin-Protein Ligases/genetics , Child , F-Box-WD Repeat-Containing Protein 7 , Female , Gene Rearrangement , Homeodomain Proteins/genetics , Humans , Male , Treatment Outcome
7.
J Appl Microbiol ; 101(3): 531-41, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16907804

ABSTRACT

AIM: Understanding the basis for the heterogeneous (or bistable) expression patterns of competence development and sporulation in Bacillus subtilis. METHODS AND RESULTS: Using flow cytometric analyses of various promoter-GFP fusions, we have determined the single-cell gene expression patterns of competence development and initiation of sporulation in a chemically defined medium (CDM) and in biofilms. CONCLUSIONS: We show that competence development and initiation of sporulation in a CDM are still initiated in a bistable manner, as is the case in complex media, but are sequential in their timing. Furthermore, we provide experimental proof that competence and sporulation can develop under conditions that normally do not trigger these processes. SIGNIFICANCE AND IMPACT OF THE STUDY: Some pathogens are able to develop natural competence, which is a serious medical problem with the increased acquired multi-drug resistance of these organisms. Another adaptive microbial response is spore formation. Because of their heat resistance and hydrophobicity, spores of a variety of species are of major concern for the food industry. Using the model organism B. subtilis, we show that competence development and sporulation are initiated in a bistable and sequential manner. We furthermore show that both processes may be noise-based, which has major implications for the control of unwanted differentiation processes in pathogenic and food-spoilage micro-organisms.


Subject(s)
Bacillus subtilis/physiology , Gene Expression Regulation, Bacterial/physiology , Bacillus subtilis/genetics , Bacterial Proteins/genetics , Biofilms , Cell Count , Culture Media , DNA, Bacterial/genetics , Flow Cytometry/methods , Gene Expression Regulation, Bacterial/genetics , Green Fluorescent Proteins/genetics , Mutation/genetics , Plasmids , Promoter Regions, Genetic/genetics , Spores, Bacterial/genetics , Spores, Bacterial/physiology , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...