Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 182
Filter
1.
Article in English | MEDLINE | ID: mdl-38898808

ABSTRACT

OBJECTIVES: Lactate dehydrogenase A (LDH-A) catalyzes the last step of glycolysis: supplying cells rapidly but inefficiently with ATP. Many tumors, including malignant mesothelioma (MM), have a high expression of LDH-A, which is associated with cancer aggressiveness. We aimed to determine whether the efficacy of the gemcitabine/carboplatin (Gem + Carbo) combination, widely used to treat this disease, could be increased by inhibition of LDH-A (by NHI-2). To this aim, we analyzed the growth inhibition of pleural and peritoneal MM by multiple combinations. METHODS: The 72 h sulforhodamine B assay (SRB) was used to test the cytotoxicity of the combination of gemcitabine (in the range 0.1 - 400 nM) and carboplatin (0.01 - 40 µM) with a fixed concentration of NHI-2 (at IC25). We used pleural (H2452) and primary peritoneal (STO, MESO-II) MM cell lines, cultured at normoxic conditions. RESULTS: NHI-2 did not increase the cytotoxicity of the combination of 100 nM gemcitabine and 10 µM carboplatin in peritoneal MM cell lines. The cell growth inhibition was 10% smaller after the triple combination than the Gem + Carbo treatment. CONCLUSIONS: Inhibition of LDH-A did not increase the efficacy of gemcitabine and carboplatin in MM under normoxic conditions.

2.
Article in English | MEDLINE | ID: mdl-38741480

ABSTRACT

Molnupiravir, an orally administered prodrug of ß-d-N4-hydroxycytidine (NHC), is incorporated into newly synthesized RNA by viral RNA-dependent RNA polymerase (RdRp). It is used for treatment of SARS-CoV-2 infections. Incorporation of NHC triphosphate into viral RNA inhibits replication of the virus, at least in part by introducing deleterious mutations. However, there is limited information on NHC incorporation into host RNA and reports on the risk of mutagenicity that molnupiravir/NHC pose to the host are conflicting. We used two liquid chromatography-mass spectrometry (LC-MS) methods to evaluate the incorporation of NHC into RNA and DNA of host Vero E6 cells in a SARS-CoV-2 infection model. To test this, host and viral RNA were degraded to their ribonucleosides, while host DNA was degraded to deoxyribonucleosides. Subsequently, nucleic acid constituents were analyzed by LC-MS, which offers specific, direct, and quantitative determination of incorporation. Our findings revealed concentration dependent NHC incorporation into host cell RNA in both infected and uninfected cell cultures, reaching a maximum of 1 in 7,093 bases. Analysis of host DNA revealed no presence of deoxy-N4-hydroxycytidine down to a detection limit of 1 in 133,000 bases. Our findings therefore suggest minimal to no NHC incorporation into host DNA, indicating a low probability of significant host cell mutagenicity associated with its use.

3.
Article in English | MEDLINE | ID: mdl-38743961

ABSTRACT

Endothelial cells (ECs) are the first line that comes into contact with blood pathogens, pathogen-derived molecules, and factors that stimulate coagulation and inflammation. Inorganic polyphosphate (polyP) - a polymer of orthophosphate units synthesized by bacteria under stress and released by platelets upon their activation is among these factors. Bacterial and platelet polyPs differ in length, and both variants elicit different effects in eukaryotes. This study aimed to investigate how bacterial-like long-chain polyP (Lc-polyP) and platelet-like short-chain polyP (Sc-polyP) affect the functionality of cultured endothelial cells. Murine immortalized heart endothelial cells (H5V) were exposed to polyP of different chain lengths to assess the effects of these stimuli on intracellular energetics, permeability, and endothelial adhesion. We observed varying effects between Lc-polyP and Sc-polyP treatments. Lc-polyP more potently disturbs the intracellular ATP pool, a parameter strongly connected with vascular injury, whereas Sc-polyP robustly stimulates cellular adhesion to the endothelium. Both polymers similarly enhance endothelial permeability, suggesting potent immunomodulatory properties. This study provides evidence that polyP elicits profound cellular responses in endothelium depending on the polymer's length.

4.
Anal Chim Acta ; 1306: 342621, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38692790

ABSTRACT

BACKGROUND: In vivo solid-phase microextraction (SPME) is a minimally invasive, non-exhaustive sample-preparation technique that facilitates the direct isolation of low molecular weight compounds from biological matrices in living systems. This technique is especially useful for the analysis of phytocannabinoids (PCs) in plant material, both for forensic purposes and for monitoring the PC content in growing Cannabis spp. plants. In contrast to traditional extraction techniques, in vivo SPME enables continuous tracking of the changes in the level of PCs during plant growth without the need for plant material collection. In this study, in vivo SPME utilizing biocompatible C18 probes and liquid-chromatography coupled to quadrupole time-of flight mass spectrometry (LC-Q-TOF-MS) is proposed as a novel strategy for the extraction and analysis of the acidic forms of five PCs in growing medicinal cannabis plants. RESULTS: The SPME method was optimized by testing various parameters, including the extraction phase (coating), extraction and desorption times, and the extraction temperature. The proposed method was validated with satisfactory analytical performance regarding linearity (10-3000 ng/mL), limits of quantification, and precision (relative standard deviations below 5.5 %). The proposed method was then successfully applied for the isolation of five acidic forms of PCs, which are main components of growing medicinal cannabis plants. As a proof-of-concept, SPME probes were statically inserted into the inflorescences of two varieties of Cannabis spp. plants (i.e., CBD-dominant and Δ9-THC-dominant) cultivated under controlled conditions for 30 min extraction of tetrahydrocannabinolic acid (Δ9-THCA), cannabidiolic acid (CBDA), cannabigerolic acid (CBGA), cannabiviarinic acid (CBVA), and tetrahydrocannabivarinic acid (THCVA). SIGNIFICANCE AND NOVELTY: The results confirmed that the developed SPME-LC-Q-TOF-MS method is a precise and efficient tool that enables direct and rapid isolation and analysis of PCs under in vivo conditions. The proposed methodology is highly appealing option for monitoring the metabolic pathways and compositions of multiple PCs in medicinal cannabis at different stages of plant growth.


Subject(s)
Cannabinoids , Cannabis , Liquid Chromatography-Mass Spectrometry , Solid Phase Microextraction , Cannabinoids/analysis , Cannabis/chemistry , Liquid Chromatography-Mass Spectrometry/methods , Solid Phase Microextraction/methods
5.
Article in English | MEDLINE | ID: mdl-38660992

ABSTRACT

Thymidylate synthase (TS) is an enzyme responsible for the conversion of deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP), with the co-substrate 5,10-methylenetetrahydrofolate (5,10-CH2-THF) as the methyl donor. TS is the only enzyme capable of de novo biosynthesis of dTMP in humans, a nucleotide crucial for DNA synthesis and therefore cell proliferation and survival. As such, TS is a major drug target in chemotherapy by compounds such as 5-fluorouracil. Due to the clinical and physiological importance of TS, the ability to accurately assay its activity is crucial. Several assays have been developed for this purpose, relying on spectrophotometry or radioisotope labeling methods. In this study, we have developed a liquid chromatography - mass spectrometry-based method for assessing TS activity by direct and specific measurement of the reaction product, dTMP. The assay was tested on mouse liver homogenates. We noted that excessive 5,10-CH2-THF concentration (400 µM) led to substrate inhibition and therefore 200 µM was used. The activity assayed at 1 µM dUMP was linear with protein content and time (up to 60 min) and was 0.56 ± 0.12 pmol/mg protein/min, in line with previously reported values. Additionally, by using a high mass resolution Orbitrap instrument side reactions were monitored, revealing major changes in folate pools and nucleotide metabolism. These findings highlight the value of the developed TS assay for routine TS activity monitoring in complex matrixes such as clinical material.

6.
Physiol Rev ; 104(3): 1409-1459, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38517040

ABSTRACT

The collective efforts of scientists over multiple decades have led to advancements in molecular and cellular biology-based technologies including genetic engineering and animal cloning that are now being harnessed to enhance the suitability of pig organs for xenotransplantation into humans. Using organs sourced from pigs with multiple gene deletions and human transgene insertions, investigators have overcome formidable immunological and physiological barriers in pig-to-nonhuman primate (NHP) xenotransplantation and achieved prolonged pig xenograft survival. These studies informed the design of Revivicor's (Revivicor Inc, Blacksburg, VA) genetically engineered pigs with 10 genetic modifications (10 GE) (including the inactivation of 4 endogenous porcine genes and insertion of 6 human transgenes), whose hearts and kidneys have now been studied in preclinical human xenotransplantation models with brain-dead recipients. Additionally, the first two clinical cases of pig-to-human heart xenotransplantation were recently performed with hearts from this 10 GE pig at the University of Maryland. Although this review focuses on xenotransplantation of hearts and kidneys, multiple organs, tissues, and cell types from genetically engineered pigs will provide much-needed therapeutic interventions in the future.


Subject(s)
Animals, Genetically Modified , Transplantation, Heterologous , Animals , Transplantation, Heterologous/methods , Humans , Swine , Genetic Engineering/methods , Heart Transplantation/methods
7.
Biomedicines ; 12(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38540167

ABSTRACT

Adenine nucleotides play a critical role in maintaining essential functions of red blood cells (RBCs), including energy metabolism, redox status, shape fluctuations and RBC-dependent endothelial and microvascular functions. Recently, it has been shown that infection with the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) might lead to morphological and metabolic alterations in erythrocytes in both mild and severe cases of coronavirus disease (COVID-19). However, little is known about the effects of COVID-19 on the nucleotide energetics of RBCs nor about the potential contribution of nucleotide metabolism to the long COVID syndrome. This study aimed to analyze the levels of adenine nucleotides in RBCs isolated from patients 12 weeks after mild SARS-CoV-2 infection who suffered from long COVID symptoms and to relate them with the endothelial and microvascular function parameters as well as the rate of peripheral tissue oxygen supply. Although the absolute quantities of adenine nucleotides in RBCs were rather slightly changed in long COVID individuals, many parameters related to the endothelial and microcirculatory function showed significant correlations with RBC adenosine triphosphate (ATP) and total adenine nucleotide (TAN) concentration. A particularly strong relationship was observed between ATP in RBCs and the serum ratio of arginine to asymmetric dimethylarginine-an indicator of endothelial function. Consistently, a positive correlation was also observed between the ATP/ADP ratio and diminished reactive hyperemic response in long COVID patients, assessed by the flow-mediated skin fluorescence (FMSF) technique, which reflected decreased vascular nitric oxide bioavailability. In addition, we have shown that patients after COVID-19 have significantly impaired ischemic response parameters (IR max and IR index), examined by FMSF, which revealed diminished residual bioavailability of oxygen in epidermal keratinocytes after brachial artery occlusion. These ischemic response parameters revealed a strong positive correlation with the RBC ATP/ADP ratio, confirming a key role of RBC bioenergetics in peripheral tissue oxygen supply. Taken together, the outcomes of this study indicate that dysregulation of metabolic processes in erythrocytes with the co-occurring endothelial and microvascular dysfunction is associated with diminished intracellular oxygen delivery, which may partly explain long COVID-specific symptoms such as physical impairment and fatigue.

8.
Int J Mol Sci ; 25(4)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38397036

ABSTRACT

Nicotinamide (NA) derivatives play crucial roles in various biological processes, such as inflammation, regulation of the cell cycle, and DNA repair. Recently, we proposed that 4-pyridone-3-carboxamide-1-ß-D-ribonucleoside (4PYR), an unusual derivative of NA, could be classified as an oncometabolite in bladder, breast, and lung cancer. In this study, we investigated the relations between NA metabolism and the progression, recurrence, metastasis, and survival of patients diagnosed with different histological subtypes of renal cell carcinoma (RCC). We identified alterations in plasma NA metabolism, particularly in the clear cell RCC (ccRCC) subtype, compared to papillary RCC, chromophobe RCC, and oncocytoma. Patients with ccRCC also exhibited larger tumor sizes and elevated levels of diagnostic serum biomarkers, such as hsCRP concentration and ALP activity, which were positively correlated with the plasma 4PYR. Notably, 4PYR levels were elevated in advanced stages of ccRCC cancer and were associated with a highly aggressive phenotype of ccRCC. Additionally, elevated concentrations of 4PYR were related to a higher likelihood of mortality, recurrence, and particularly metastasis in ccRCC. These findings are consistent with other studies, suggesting that NA metabolism is accelerated in RCC, leading to abnormal concentrations of 4PYR. This supports the concept of 4PYR as an oncometabolite and a potential prognostic factor in the ccRCC subtype.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Pyridones , Ribonucleosides , Humans , Nucleosides/metabolism , Niacinamide
9.
Cell Mol Neurobiol ; 43(8): 4245-4259, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37801200

ABSTRACT

Hypercholesterolemia affects the neurovascular unit, including the cerebral blood vessel endothelium. Operation of this system, especially in the context of energy metabolism, is controlled by extracellular concentration of purines, regulated by ecto-enzymes, such as e-NTPDase-1/CD39, ecto-5'-NT/CD73, and eADA. We hypothesize that hypercholesterolemia, via modulation of the activity of nucleotide metabolism-regulating ecto-enzymes, deteriorates glycolytic efficiency and energy metabolism of endothelial cells, which may potentially contribute to development of neurodegenerative processes. We aimed to determine the effect of hypercholesterolemia on the concentration of purine nucleotides, glycolytic activity, and activity of ecto-enzymes in the murine brain microvascular endothelial cells (mBMECs). We used 3-month-old male LDLR-/-/Apo E-/- double knockout mice to model hypercholesterolemia and atherosclerosis. The age-matched wild-type C57/BL6 mice were a control group. The intracellular concentration of ATP and NAD and extracellular activity of the ecto-enzymes were measured by HPLC. The glycolytic function of mBMECs was assessed by means of the extracellular acidification rate (ECAR) using the glycolysis stress test. The results showed an increased activity of ecto-5'-NT and eADA in mBMECs of the hypercholesterolemic mice, but no differences in intracellular concentration of ATP, NAD, and ECAR between the hypercholesterolemic and control groups. The changed activity of ecto-5'-NT and eADA leads to increased purine nucleotides turnover and a shift in their concentration balance towards adenosine and inosine in the extracellular space. However, no changes in the energetic metabolism of the mBMECs are reported. Our results confirm the influence of hypercholesterolemia on regulation of purine nucleotides metabolism, which may impair the function of the cerebral vascular endothelium. The effect of hypercholesterolemia on the murine brain microvascular endothelial cells (mBMECs). An increased activity of ecto-5'-NT and eADA in mBMECs of the LDLR-/-/Apo E-/- mice leads to a shift in the concentration balance towards adenosine and inosine in the extracellular space with no differences in intracellular concentration of ATP. Figure was created with Biorender.com.


Subject(s)
Hypercholesterolemia , Male , Mice , Animals , Endothelial Cells/metabolism , NAD/metabolism , Adenosine/metabolism , Adenosine Triphosphate/metabolism , Brain/metabolism , Mice, Knockout , Endothelium/metabolism , Inosine , Apolipoproteins E , 5'-Nucleotidase/metabolism
10.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37895880

ABSTRACT

The vascular endothelium is key target for immune and thrombotic responses that has to be controlled in successful xenotransplantation. Several genes were identified that, if induced or overexpressed, help to regulate the inflammatory response and preserve the transplanted organ function and metabolism. However, few studies addressed combined expression of such genes. The aim of this work was to evaluate in vivo the effects of the simultaneous expression of three human genes in a mouse generated using the multi-cistronic F2A technology. Male 3-month-old mice that express human heme oxygenase 1 (hHO-1), ecto-5'-nucleotidase (hE5NT), and ecto-nucleoside triphosphate diphosphohydrolase 1 (hENTPD1) (Transgenic) were compared to wild-type FVB mice (Control). Background analysis include extracellular nucleotide catabolism enzymes profile on the aortic surface, blood nucleotide concentration, and serum L-arginine metabolites. Furthermore, inflammatory stress induced by LPS in transgenic and control mice was used to characterize interleukin 6 (IL-6) and adhesion molecules endothelium permeability responses. Transgenic mice had significantly higher rates of extracellular adenosine triphosphate and adenosine monophosphate hydrolysis on the aortic surface in comparison to control. Increased levels of blood AMP and adenosine were also noticed in transgenics. Moreover, transgenic animals demonstrated the decrease in serum monomethyl-L-arginine level and a higher L-arginine/monomethyl-L-arginine ratio. Importantly, significantly decreased serum IL-6, and adhesion molecule levels were observed in transgenic mice in comparison to control after LPS treatment. Furthermore, reduced endothelial permeability in the LPS-treated transgenic mice was noted as compared to LPS-treated control. The human enzymes (hHO-1, hE5NT, hENTPD1) simultaneously encoded in transgenic mice demonstrated benefits in several biochemical and functional aspects of endothelium. This is consistent in use of this approach in the context of xenotransplantation.

11.
Front Physiol ; 14: 1216267, 2023.
Article in English | MEDLINE | ID: mdl-37745244

ABSTRACT

Background: Statins and proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) are cornerstones of therapy to prevent cardiovascular disease, acting by lowering lipid concentrations and only partially identified pleiotropic effects. This study aimed to analyze impacts of atorvastatin and synthetic peptide PCSK9i on bioenergetics and function of microvascular endothelial cells and cardiomyocytes. Methods: Mitochondrial function and abundance as well as intracellular nucleotides, membrane potential, cytoskeleton structure, and cell proliferation rate were evaluated in mouse heart microvascular endothelial cells (H5V) and cardiomyocytes (HL-1) under normal and hypoxia-mimicking conditions (CoCl2 exposure). Results: In normal conditions PCSK9i, unlike atorvastatin, enhanced mitochondrial respiratory parameters, increased nucleotide levels, prevented actin cytoskeleton disturbances and stimulated endothelial cell proliferation. Under hypoxia-mimicking conditions both atorvastatin and PCSK9i improved the mitochondrial respiration and membrane potential in both cell types. Conclusion: This study demonstrated that both treatments benefited the endothelial cell and cardiomyocyte bioenergetics, but the effects of PCSK9i were superior.

12.
Cytokine Growth Factor Rev ; 73: 163-172, 2023 10.
Article in English | MEDLINE | ID: mdl-37541790

ABSTRACT

Chemoresistance constitute a major obstacle in cancer treatment, leading to limited options and decreased patient survival. Recent studies have revealed a novel mechanism of chemoresistance acquisition: the transfer of information via exosomes, small vesicles secreted by various cells. Exosomes play a crucial role in intercellular communication by carrying proteins, nucleic acids, and metabolites, influencing cancer cell behavior and response to treatment. One crucial mechanism of resistance is cancer metabolic reprogramming, which involves alterations in the cellular metabolic pathways to support the survival and proliferation of drug-resistant cancer cells. This metabolic reprogramming often includes increased glycolysis, providing cancer cells with the necessary energy and building blocks to evade the effects of chemotherapy. Notably, exosomes have been found to transport glycolytic enzymes, as identified in proteomic profiling, leading to the reprogramming of metabolic pathways, facilitating altered glucose metabolism and increased lactate production. As a result, they profoundly impact the tumor microenvironment, promoting tumor progression, survival, immune evasion, and drug resistance.Understanding the complexities of such exosome-mediated cell-to-cell communication might open new therapeutic avenues and facilitate biomarker development in managing cancers characterized by aggressive glycolytic features. Moreover, given the intricate nature of metabolic abnormalities combining future exosome-based-targeted therapies with existing treatments like chemotherapy, immunotherapy, and targeted therapies holds promise for achieving synergistic effects to overcome resistance and improve cancer treatment outcomes.


Subject(s)
Exosomes , Neoplasms , Humans , Drug Resistance, Neoplasm , Exosomes/physiology , Proteomics , Neoplasms/therapy , Glycolysis , Tumor Microenvironment
13.
Int J Mol Sci ; 24(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37298116

ABSTRACT

Malignant Pleural Mesothelioma (MPM) is a rare neoplasm that is typically diagnosed in a locally advanced stage, making it not eligible for radical surgery and requiring systemic treatment. Chemotherapy with platinum compounds and pemetrexed has been the only approved standard of care for approximately 20 years, without any relevant therapeutic advance until the introduction of immune checkpoint inhibitors. Nevertheless, the prognosis remains poor, with an average survival of only 18 months. Thanks to a better understanding of the molecular mechanisms underlying tumor biology, targeted therapy has become an essential therapeutic option in several solid malignancies. Unfortunately, most of the clinical trials evaluating potentially targeted drugs for MPM have failed. This review aims to present the main findings of the most promising targeted therapies in MPM, and to explore possible reasons leading to treatments failures. The ultimate goal is to determine whether there is still a place for continued preclinical/clinical research in this area.


Subject(s)
Lung Neoplasms , Mesothelioma, Malignant , Mesothelioma , Pleural Neoplasms , Humans , Mesothelioma, Malignant/drug therapy , Mesothelioma/pathology , Lung Neoplasms/pathology , Pleural Neoplasms/drug therapy , Pleural Neoplasms/pathology , Pemetrexed , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
14.
Int J Mol Sci ; 24(9)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37175477

ABSTRACT

Malignant mesothelioma (MM) is a highly aggressive and resistant tumor. The prognostic role of key effectors of glycolytic metabolism in MM prompted our studies on the cytotoxicity of new inhibitors of glucose transporter type 1 (GLUT-1) and lactate dehydrogenase-A (LDH-A) in relation to ATP/NAD+ metabolism, glycolysis and mitochondrial respiration. The antiproliferative activity of GLUT-1 (PGL13, PGL14) and LDH-A (NHI-1, NHI-2) inhibitors, alone and in combination, were tested with the sulforhodamine-B assay in peritoneal (MESO-II, STO) and pleural (NCI-H2052 and NCI-H28) MM and non-cancerous (HMEC-1) cells. Effects on energy metabolism were measured by both analysis of nucleotides using RP-HPLC and evaluation of glycolysis and respiration parameters using a Seahorse Analyzer system. All compounds reduced the growth of MM cells in the µmolar range. Interestingly, in H2052 cells, PGL14 decreased ATP concentration from 37 to 23 and NAD+ from 6.5 to 2.3 nmol/mg protein. NHI-2 reduced the ATP/ADP ratio by 76%. The metabolic effects of the inhibitors were stronger in pleural MM and in combination, while in HMEC-1 ATP reduction was 10% lower compared to that of the H2052 cells, and we observed a minor influence on mitochondrial respiration. To conclude, both inhibitors showed cytotoxicity in MM cells, associated with a decrease in ATP and NAD+, and were synergistic in the cells with the highest metabolic modulation. This underlines cellular energy metabolism as a potential target for combined treatments in selected cases of MM.


Subject(s)
Mesothelioma, Malignant , Mesothelioma , Humans , Lactate Dehydrogenase 5 , Glucose Transport Proteins, Facilitative , NAD , Cell Line, Tumor , Glycolysis , Adenosine Triphosphate , Glucose , Mesothelioma/drug therapy , Mesothelioma/pathology
15.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37111356

ABSTRACT

Myocardial ischemic adenosine production decreases in subsequent events that may blunt its protective functions. To test the relation between total or mitochondrial cardiac adenine nucleotide pool (TAN) on the energy status with adenosine production, Langendorff perfused rat hearts were subjected to three protocols: 1 min ischemia at 40 min, 10 min ischemia at 50 min, and 1 min ischemia at 85 min in Group I; additional infusion of adenosine (30 µM) for 15 min after 10 min ischemia in Group I-Ado, and 1 min ischemia at 40 and 85 min in the controls (Group No I). A 31P NMR and an HPLC were used for the analysis of nucleotide and catabolite concentrations in the heart and coronary effluent. Cardiac adenosine production in Group I measured after 1 min ischemia at 85 min decreased to less than 15% of that at 40 min in Group I, accompanied by a decrease in cardiac ATP and TAN to 65% of the initial results. Adenosine production at 85 min was restored to 45% of that at 40 min in Group I-Ado, accompanied by a rebound of ATP and TAN by 10% vs. Group I. Mitochondrial TAN and free AMP concentrations paralleled that of total cardiac TAN. Changes in energy equilibrium or mitochondrial function were minor. This study highlights that only a fraction of the cardiac adenine nucleotide pool is available for adenosine production, but further studies are necessary to clarify its nature.

16.
Metabolites ; 13(3)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36984809

ABSTRACT

The prevalence of neurodegenerative diseases (NDs) is increasing due to the aging population and improved longevity. They are characterized by a range of pathological hallmarks, including protein aggregation, mitochondrial dysfunction, and oxidative stress. The aim of this review is to summarize the alterations in brain energy and amino acid metabolism in Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Based on our findings, we proposed a group of selected metabolites related to disturbed energy or mitochondrial metabolism as potential indicators or predictors of disease. We also discussed the hidden challenges of metabolomics studies in NDs and proposed future directions in this field. We concluded that biochemical parameters of brain energy metabolism disruption (obtained with metabolomics) may have potential application as a diagnostic tool for the diagnosis, prediction, and monitoring of the effectiveness of therapies for NDs. However, more studies are needed to determine the sensitivity of the proposed candidates. We suggested that the most valuable biomarkers for NDs studies could be groups of metabolites combined with other neuroimaging or molecular techniques. To attain clinically applicable results, the integration of metabolomics with other "omic" techniques might be required.

17.
Int J Mol Sci ; 24(6)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36982805

ABSTRACT

Chronic kidney disease (CKD) is associated with elevated plasma fibrinogen concentration. However, the underlying molecular mechanism for elevated plasma fibrinogen concentration in CKD patients has not yet been clarified. We recently found that HNF1α was significantly upregulated in the liver of chronic renal failure (CRF) rats, an experimental model of CKD in patients. Given that the promoter region of the fibrinogen gene possesses potential binding sites for HNF1α, we hypothesized that the upregulation of HNF1α can increase fibrinogen gene expression and consequently plasma fibrinogen concentration in the experimental model of CKD. Here, we found the coordinated upregulation of Aα-chain fibrinogen and Hnfα gene expression in the liver and elevated plasma fibrinogen concentrations in CRF rats, compared with pair-fed and control animals. Liver Aα-chain fibrinogen and HNF1α mRNAs levels correlated positively with (a) liver and plasma fibrinogen levels and (b) liver HNF1α protein levels. The positive correlation between (a) liver Aα-chain fibrinogen mRNA level, (b) liver Aα-chain fibrinogen level, and (c) serum markers of renal function suggest that fibrinogen gene transcription is closely related to the progression of kidney disease. Knockdown of Hnfα in the HepG2 cell line by small interfering RNA (siRNA) led to a decrease in fibrinogen mRNA levels. Clofibrate, an anti-lipidemic drug that reduces plasma fibrinogen concentration in humans, decreased both HNF1α and Aα-chain fibrinogen mRNAs levels in (a) the liver of CRF rats and (b) HepG2 cells. The obtained results suggest that (a) an elevated level of liver HNF1α can play an important role in the upregulation of fibrinogen gene expression in the liver of CRF rats, leading to an elevated concentration of plasma fibrinogen, a protein related to the risk of cardiovascular disease in CKD patients, and (b) fibrates can decrease plasma fibrinogen concentration through inhibition of HNF1α gene expression.


Subject(s)
Fibrinogen , Kidney Failure, Chronic , Rats , Humans , Animals , Fibrinogen/genetics , Fibrinogen/metabolism , Liver/metabolism , Kidney Failure, Chronic/genetics , Kidney Failure, Chronic/metabolism , RNA, Messenger/genetics , RNA, Small Interfering/metabolism , Gene Expression , Hepatocyte Nuclear Factors/genetics , Hepatocyte Nuclear Factors/metabolism
18.
Curr Med Chem ; 30(11): 1209-1231, 2023.
Article in English | MEDLINE | ID: mdl-35366764

ABSTRACT

Mitochondria are the main energy factory in living cells. To rapidly proliferate and metastasize, neoplastic cells increase their energy requirements. Thus, mitochondria become one of the most important organelles for them. Indeed, much research shows the interplay between cancer chemoresistance and altered mitochondrial function. In this review, we focus on the differences in energy metabolism between cancer and normal cells to better understand their resistance and how to develop drugs targeting energy metabolism and nucleotide synthesis. One of the differences between cancer and normal cells is the higher nicotinamide adenine dinucleotide (NAD+) level, a cofactor for the tricarboxylic acid cycle (TCA), which enhances their proliferation and helps cancer cells survive under hypoxic conditions. An important change is a metabolic switch called the Warburg effect. This effect is based on the change of energy harvesting from oxygen-dependent transformation to oxidative phosphorylation (OXPHOS), adapting them to the tumor environment. Another mechanism is the high expression of one-carbon (1C) metabolism enzymes. Again, this allows cancer cells to increase proliferation by producing precursors for the synthesis of nucleotides and amino acids. We reviewed drugs in clinical practice and development targeting NAD+, OXPHOS, and 1C metabolism. Combining novel drugs with conventional antineoplastic agents may prove to be a promising new way of anticancer treatment.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , NAD/pharmacology , Mitochondria/metabolism , Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Energy Metabolism , Oxidative Phosphorylation
19.
Nucleosides Nucleotides Nucleic Acids ; 41(12): 1386-1395, 2022.
Article in English | MEDLINE | ID: mdl-36323286

ABSTRACT

Organ preservation solutions are essential to diminish ischemic/hypoxic injury during cold storage and to improve graft survival. In our experiments, we investigated novel solutions that target such mechanisms as Transmedium Transplant Fluid (TTF) in comparison to PlegiStore solution (HTK). Rat hearts were infused with TTF or HTK and then subjected to 4 hours of 4 °C preservation followed by 25 minutes of reperfusion in the Langendorff system. Assessment of purine release from the heart, mechanical function, and cardiac nucleotide content in the heart homogenates was done. A significant increase in the uric acid, hypoxanthine, inosine, and total purine metabolite concentrations were observed in the HTK hearts when compared to TTF. The TTF group had lower left ventricular systolic pressure and left ventricular end-diastolic pressure when compared to the HTK. Left ventricular diastolic pressure, minimal dp/dt, and maximal dp/dt in both groups were similar. The concentration of ADP in the heart homogenates of the HTK group was increased when compared to the TTF group. ATP and GTP concentration showed a tendency to increase in the homogenates of TTF hearts when NAD, AMP, GDP, GMP, and ADPR were similar in both groups of rats. TTF provided enhanced cardioprotection as evidenced by inhibiting the purine nucleotide metabolites released from the rat hearts during reperfusion and enhanced systolic and diastolic mechanical function recovery. In particular, better preservation of GTP and ATP concentrations may translate into enhanced protection of endothelium and the cytoskeleton, which are not adequately protected with current preservation techniques.


Subject(s)
Histidine , Tryptophan , Rats , Animals , Potassium Chloride/pharmacology , Adenosine Triphosphate/metabolism , Purines , Nucleotides , Guanosine Triphosphate
20.
Front Mol Neurosci ; 15: 998023, 2022.
Article in English | MEDLINE | ID: mdl-36204140

ABSTRACT

Background: Adenosine deaminase (ADA) via two isoenzymes, ADA1 and ADA2, regulates intra- and extracellular adenosine concentrations by converting it to inosine. In the central nervous system (CNS), adenosine modulates the processes of neuroinflammation and demyelination that together play a critical role in the pathophysiology of multiple sclerosis (MS). Except for their catalytic activities, ADA isoenzymes display extra-enzymatic properties acting as an adhesion molecule or a growth factor. Aims: This study aimed to explore the distribution and activity of ADA1 and ADA2 in the plasma and the CSF of MS patients as well as in the human brain microvascular endothelial cells (HBMEC), human brain vascular pericytes and human astrocytes. Methods and results: The enzyme assay following reverse phase-high performance liquid chromatography (HPLC) analysis was used to detect the ADA1 and ADA2 activities and revealed an increased ratio of ADA1 to ADA2 in both the plasma and the CSF of MS patients. Plasma ADA1 activity was significantly induced in MS, while ADA2 was decreased in the CSF, but significance was not reached. The brain astrocytes, pericytes and endothelial cells revealed on their surface the activity of ADA1, with its basal level being five times higher in the endothelial cells than in the astrocytes or the pericytes. In turn, ADA2 activity was only observed in pericytes and endothelial cells. Stimulation of the cells with pro-inflammatory cytokines TNFα/IL17 for 18 h decreased intracellular nucleotide levels measured by HPLC only in pericytes. The treatment with TNFα/IL17 did not modulate cell-surface ATP and AMP hydrolysis nor adenosine deamination in pericytes or astrocytes. Whereas in endothelial cells it downregulated AMP hydrolysis and ADA2 activity and upregulated the ADA1, which reflects the ADA isoenzyme pattern observed here in the CSF of MS patients. Conclusion: In this study, we determined the impaired distribution of both ADA isoenzymes in the plasma and the CSF of patients with MS. The increased ADA1 to ADA2 ratio in the CSF and plasma may translate to unfavorable phenotype that triggers ADA1-mediated pro-inflammatory mechanisms and decreases ADA2-dependent neuroprotective and growth-promoting effects in MS.

SELECTION OF CITATIONS
SEARCH DETAIL
...