Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 23(8): 1618-26, 2004 Feb 26.
Article in English | MEDLINE | ID: mdl-14985702

ABSTRACT

Biomarkers that indicate biological activity and/or efficacy are a potentially useful tool in the development of molecularly targeted therapeutics. It is useful, though challenging, to identify biomarkers during preclinical development in order to impact decision-making during early clinical development. SU11248 is an oral, selective multitargeted tyrosine kinase inhibitor currently in Phase II oncology clinical trials. It exhibits direct antitumor and antiangiogenic activity via inhibition of the receptor tyrosine kinases PDGFR, VEGFR, KIT and FLT3. To identify clinically translatable biomarkers of SU11248 activity, expression profiling was performed on Colo205 human xenograft tumors following treatment with SU11248. Over 100 transcripts changed in abundance in SU11248 as compared to vehicle-treated tumors. Nine candidate transcripts, chosen based on putative function, were also analysed and validated by TaqMan. One such potential biomarker, cadherin-11, was further evaluated at the protein level and was found to have increased expression in xenograft tumors after SU11248 treatment. Interestingly, cadherin-11 expression was also detected via immunohistochemical analysis of archived solid tumors, indicating the technical feasibility of translating this putative biomarker to clinical studies. Importantly, SU11248 treatment also resulted in increased expression of cadherin-11 protein in human tumor biopsies in three out of seven patients examined and confirms the feasibility of using transcriptional profiling of preclinical models to identify clinically translatable biomarkers.


Subject(s)
Cadherins/metabolism , Colonic Neoplasms/metabolism , Enzyme Inhibitors/therapeutic use , Indoles/therapeutic use , Pyrroles/therapeutic use , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Biomarkers , Cadherins/drug effects , Cell Line, Tumor , Feasibility Studies , Female , Gene Expression Profiling/methods , Humans , Immunohistochemistry , Mice , Mice, Nude , Neoplasm Transplantation , Sunitinib , Transplantation, Heterologous
2.
BMC Cancer ; 3: 3, 2003 Feb 07.
Article in English | MEDLINE | ID: mdl-12657164

ABSTRACT

BACKGROUND: Microarray-based gene expression profiling is a powerful approach for the identification of molecular biomarkers of disease, particularly in human cancers. Utility of this approach to measure responses to therapy is less well established, in part due to challenges in obtaining serial biopsies. Identification of suitable surrogate tissues will help minimize limitations imposed by those challenges. This study describes an approach used to identify gene expression changes that might serve as surrogate biomarkers of drug activity. METHODS: Expression profiling using microarrays was applied to peripheral blood mononuclear cell (PBMC) samples obtained from patients with advanced colorectal cancer participating in a Phase III clinical trial. The PBMC samples were harvested pre-treatment and at the end of the first 6-week cycle from patients receiving standard of care chemotherapy or standard of care plus SU5416, a vascular endothelial growth factor (VEGF) receptor tyrosine kinase (RTK) inhibitor. Results from matched pairs of PBMC samples from 23 patients were queried for expression changes that consistently correlated with SU5416 administration. RESULTS: Thirteen transcripts met this selection criterion; six were further tested by quantitative RT-PCR analysis of 62 additional samples from this trial and a second SU5416 Phase III trial of similar design. This method confirmed four of these transcripts (CD24, lactoferrin, lipocalin 2, and MMP-9) as potential biomarkers of drug treatment. Discriminant analysis showed that expression profiles of these 4 transcripts could be used to classify patients by treatment arm in a predictive fashion. CONCLUSIONS: These results establish a foundation for the further exploration of peripheral blood cells as a surrogate system for biomarker analyses in clinical oncology studies.


Subject(s)
Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Colorectal Neoplasms/blood , Colorectal Neoplasms/genetics , Gene Expression Profiling/methods , Indoles/therapeutic use , Membrane Glycoproteins , Neoplasm Metastasis/drug therapy , Neoplasm Metastasis/genetics , Oligonucleotide Array Sequence Analysis/methods , Pyrroles/therapeutic use , Aged , Angiogenesis Inhibitors/therapeutic use , Antigens, CD/blood , Antigens, CD/genetics , CD24 Antigen , Clinical Trials, Phase III as Topic/methods , Colorectal Neoplasms/drug therapy , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Lactoferrin/blood , Lactoferrin/genetics , Leukocytes, Mononuclear/chemistry , Leukocytes, Mononuclear/metabolism , Male , Matrix Metalloproteinase 9/blood , Matrix Metalloproteinase 9/genetics , Middle Aged , Predictive Value of Tests , Protein-Tyrosine Kinases/antagonists & inhibitors , Reverse Transcriptase Polymerase Chain Reaction/methods
3.
Blood ; 101(9): 3597-605, 2003 May 01.
Article in English | MEDLINE | ID: mdl-12531805

ABSTRACT

FLT3 (fms-related tyrosine kinase/Flk2/Stk-2) is a receptor tyrosine kinase (RTK) primarily expressed on hematopoietic cells. In blasts from acute myelogenous leukemia (AML) patients, 2 classes of FLT3 activating mutations have been identified: internal tandem duplication (ITD) mutations in the juxtamembrane domain (25%-30% of patients) and point mutations in the kinase domain activation loop (7%-8% of patients). FLT3-ITD mutations are the most common molecular defect identified in AML and have been shown to be an independent prognostic factor for decreased survival. FLT3-ITD is therefore an attractive molecular target for therapy. SU11248 is a recently described selective inhibitor with selectivity for split kinase domain RTKs, including platelet-derived growth factor receptors, vascular endothelial growth factor receptors, and KIT. We show that SU11248 also has potent activity against wild-type FLT3 (FLT3-WT), FLT3-ITD, and FLT3 activation loop (FLT3-Asp835) mutants in phosphorylation assays. SU11248 inhibits FLT3-driven phosphorylation and induces apoptosis in vitro. In addition, SU11248 inhibits FLT3-induced VEGF production. The in vivo efficacy of SU11248 was investigated in 2 FLT3-ITD models: a subcutaneous tumor xenograft model and a bone marrow engraftment model. We show that SU11248 (20 mg/kg/d) dramatically regresses FLT3-ITD tumors in the subcutaneous tumor xenograft model and prolongs survival in the bone marrow engraftment model. Pharmacokinetic and pharmacodynamic analysis in subcutaneous tumors showed that a single administration of an efficacious drug dose potently inhibits FLT3-ITD phosphorylation for up to 16 hours following a single dose. These results suggest that further exploration of SU11248 activity in AML patients is warranted.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Indoles/pharmacology , Proto-Oncogene Proteins/antagonists & inhibitors , Pyrroles/pharmacology , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Acute Disease , Amino Acid Substitution , Animals , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Bone Marrow Transplantation , Endothelial Growth Factors/biosynthesis , Enzyme Inhibitors/therapeutic use , Female , Humans , Indoles/therapeutic use , Intercellular Signaling Peptides and Proteins/biosynthesis , Leukemia, Myeloid/enzymology , Leukemia, Myeloid/pathology , Lymphokines/biosynthesis , Mice , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Phosphorylation/drug effects , Point Mutation , Protein Processing, Post-Translational/drug effects , Protein Structure, Tertiary , Proto-Oncogene Proteins/genetics , Pyrroles/therapeutic use , Receptor Protein-Tyrosine Kinases/genetics , Recombinant Fusion Proteins/antagonists & inhibitors , Signal Transduction/drug effects , Sunitinib , Tandem Repeat Sequences , Transfection , Tumor Cells, Cultured/enzymology , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factors , Xenograft Model Antitumor Assays , fms-Like Tyrosine Kinase 3
4.
Blood ; 100(8): 2941-9, 2002 Oct 15.
Article in English | MEDLINE | ID: mdl-12351406

ABSTRACT

Internal tandem duplication (ITD) in the juxtamembrane portion of Fms-like tyrosine kinase 3 (FLT3), a type III receptor tyrosine kinase (RTK), is the most common molecular defect associated with acute myeloid leukemia (AML). The high prevalence of this activating mutation makes it a potential target for molecularly based therapy. Indolinone tyrosine kinase inhibitors have known activity against KIT, another member of the type III RTK family. Given the conserved homology between members of this family, we postulated that the activity of some KIT inhibitors would extend to FLT3. We used various leukemic cell lines (BaF3, MV 4-11, RS 4;11) to test the activity of indolinone compounds against the FLT3 kinase activity of both wild-type (WT) and ITD isoforms. Both SU5416 and SU5614 were capable of inhibiting autophosphorylation of ITD and WT FLT3 (SU5416 concentration that inhibits 50% [IC(50)], 100 nM; and SU5614 IC(50) 10 nM). FLT3-dependent activation of the downstream signaling proteins mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 5 (STAT5) was also inhibited by treatment in the same concentration ranges. FLT3 inhibition by SU5416 and SU5614 resulted in reduced proliferation (IC(50), 250 nM and 100 nM, respectively) and induction of apoptosis of FLT3 ITD-positive leukemic cell lines. Treatment of these cells with an alternative growth factor (granulocyte-macrophage colony-stimulating factor [GM-CSF]) restored MAPK signaling and cellular proliferation, demonstrating specificity of the observed inhibitory effects. We conclude that SU5416 and SU5614 are potent inhibitors of FLT3. Our finding that inhibition of FLT3 induces apoptosis of leukemic cells supports the feasibility of targeting FLT3 as a novel treatment strategy for AML.


Subject(s)
Enzyme Inhibitors/pharmacology , Indoles/pharmacology , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , Pyrroles/pharmacology , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/genetics , Amino Acid Sequence , Apoptosis/drug effects , Base Sequence , Cell Division/drug effects , Chromatography, High Pressure Liquid , Exons , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Humans , Molecular Sequence Data , Mutagenesis, Site-Directed , Polymerase Chain Reaction , Proto-Oncogene Proteins/chemistry , Receptor Protein-Tyrosine Kinases/chemistry , Receptors, Cell Surface/antagonists & inhibitors , Recombinant Proteins/antagonists & inhibitors , Tumor Cells, Cultured , fms-Like Tyrosine Kinase 3
5.
Evolution ; 40(4): 716-739, 1986 Jul.
Article in English | MEDLINE | ID: mdl-28556147

ABSTRACT

We studied mitochondrial DNA variability in 19 natural Neurospora crassa isolates and one wild-type isolate to examine evolution of these fungi and their mitochondrial DNA (mtDNA). We combined restriction endonuclease analysis of natural isolate mtDNA with DNA-DNA hybridization to cloned EcoR I fragments of a wild-type genome to discriminate between length mutations and site changes due to nucleotide substitution. Most variability was due to length mutations (insertions and deletions); genome size could vary 25% between pairs of isolates. Length-mutation distribution was not random, nor simply explained by the presence of coding versus noncoding regions. Restriction-site changes were few; the estimated amount of nucleotide substitution per nucleotide between the most divergent pair of isolates was 0.78%. Evolutionary relationships among isolates based on both types of mutations were compatible, and suggest that geographically distinct populations of mitochondrial DNA exist in the biological species, N. crassa. In contrast, no such correlation was shown by the previously determined distribution of nuclear heterokaryon incompatibility genes in the same isolates (Mylyk, 1975, 1976).

SELECTION OF CITATIONS
SEARCH DETAIL
...