Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 126(51): 10870-10881, 2022 12 29.
Article in English | MEDLINE | ID: mdl-36524597

ABSTRACT

Ab initio studies of the structure of reduced ß-nicotinamide d-ribonucleotide (NMNH(2-)) conformations in water and methanol solutions have been carried out for clarifying the role of the phosphate groups in fluorescence parameters of the NMNH(2-) molecule and the reduced ß-nicotinamide adenine dinucleotide (NADH) molecule. Relaxed potential energy surfaces as a function of the dihedral rotation angle of the amide group in the NMNH(2-) molecule were calculated in the ground electronic state and the first excited electronic state to better understand the effect of phosphate groups on the nonradiative decay rates in the nicotinamide chromophore groups. The differences in the weighting coefficients in the biexponential fluorescence signals for NMNH(2-) and NADH molecules in solution were explained. A strong hydrogen bonding between the amide hydrogen atom and the nearest oxygen O- atom from the phosphate group was detected by ab initio calculations for the folded NMNH(2-) conformations in the ground electronic state at trans configurations of the nicotinamide ring. This hydrogen bonding turned out to be much weaker for the first excited electronic state. These calculated data show that, after optical excitation of the NMNH(2-) molecule, a rapid change in the geometry of the molecule is possible. The strong interaction of the phosphate group with the amide group in NMNH(2-) molecules in aqueous solution leads to the predominance of the folded NMNH(2-) conformations and trans configurations of the nicotinamide ring. This explains the reason for the dominance of one fluorescence decay time of NMNH(2-) in the aqueous solution. Based on these data, an important conclusion can be drawn that the contribution of the exponent with the short decay time τ ≈ 0.28 ns to the fluorescence signal of NMNH(2-), NADH, and NADPH molecules is related to the trans configuration of the nicotinamide ring.


Subject(s)
Methanol , NAD , Water/chemistry , Fluorescence , Niacinamide , Amides
2.
J Phys Chem B ; 125(34): 9692-9707, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34410128

ABSTRACT

The dynamics of polarized fluorescence in NADH in alcohol dehydrogenase (ADH) in buffer solution has been studied using the TCSPC spectroscopy. A global fit procedure was used for determination of the fluorescence parameters from experiment. The interpretation of the results obtained was supported by ab initio calculations of the NADH structure. A theoretical model was developed describing the polarized fluorescence decay in ADH-NADH complexes that considered several interaction scenarios. A comparative analysis of the polarization-insensitive fluorescence decay using multiexponential fitting models has been carried out. As shown, the origin of a significant enhancement of the decay time in the ADH-NADH complex can be attributed to the decrease of nonradiative relaxation rates in the nicotinamide ring in the conditions of the apolar binding site environment. The existence of a single decay time in the ADH-NADH complex in comparison with two decay times observed in free NADH was attributed to a single NADH unfolded conformation in the ADH binding site. Comparison of the experimental data with the theoretical model suggested the existence of an anisotropic relaxation time of about 1 ns that is related with the rotation of fluorescence transition dipole moment due to the rearrangement of the excited state NADH nuclear configuration.


Subject(s)
Alcohol Dehydrogenase , NAD , Alcohol Dehydrogenase/metabolism , Anisotropy , Binding Sites , NAD/metabolism , Spectrometry, Fluorescence
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 263: 120145, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34274636

ABSTRACT

We present results of experimental and theoretical studies of excited state dynamics in two alkyl derivatives of fluorescein, MitoFluo and C8-Fl in solutions with liposomes. The liposomes DOPC and soybeanPC + 20% Cardiolipin (Azo-Cl), modelling cellular and inner mitochondrial membranes, respectively, were used in experiments. Both types of liposomes were shown to reduce significantly the fluorescence quantum yield as compared to that of pure fluorescein derivatives in solutions, while DOPC liposomes also caused a noticeable (ca 10 nm) red shift of fluorescence maximum. The study of fluorescence polarization decay has been carried out where important fluorescence parameters: polarization anisotropy, fluorescence lifetimes, and rotational diffusion times have been determined. It was shown that the isotropic fluorescence decay of C8-Fl in liposome containing solutions was single-exponential and the anisotropic decay was double-exponential for both types of lyposomes. In the case of MitoFluo both isotropic and anisotropic fluorescence decays were fitted satisfactory only with double-exponential functions. The interpretation of the experimental data obtained was supported by ab initio calculations of the structure and excitation properties of MitoFluo and C8-Fl in aqueous solution. The analysis of anisotropic fluorescence decay allowed for isolation of the contributions of fluorescein derivatives free in solution from those embedded in liposomes. Also, the experimental data suggest that MitoFluo interacts with liposomes more effectively than C8-Fl. Basing on the experimental and theoretical results obtained we conclude that free C8-Fl and MitoFluo molecules in solution were mostly in their dimer forms.


Subject(s)
Liposomes , Diffusion , Fluorescein , Fluorescence Polarization , Spectrometry, Fluorescence
4.
J Phys Chem B ; 124(47): 10682-10697, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33175534

ABSTRACT

The dynamics of polarized fluorescence in reduced nicotinamide adenine dinucleotide (NADH) at 460 nm under two-photon excitation at 720 nm by femtosecond laser pulses in water-methanol solutions has been studied experimentally and theoretically as a function of methanol concentration. A number of fluorescence parameters have been determined from experiment by means of the global fit procedure and then compared with the results reported by other authors. A comprehensive analysis of experimental errors was made. Ab initio calculations of the structure of NADH in water and methanol and of ß-nicotinamide mononucleotide (NMNH) in vacuum have been carried out for clarifying the role of decay time heterogeneity. The main results obtained are as follows. An explanation of the heterogeneity in the measured fluorescence decay times in NADH has been suggested based on the influence of the internal molecular electric field in the nicotinamide ring on nonradiative decay rates. We suggest that different charge distributions in the cis and trans configurations result in different internal electrostatic field distributions that lead to the decay time heterogeneity. A slight but noticeable rise of the fluorescence decay times τ1 and τ2 with methanol concentration was observed and treated as a minor effect of a nonradiative relaxation slowing due to the decrease in solution polarity. Relative concentrations of the folded and unfolded NADH conformations in solutions have been determined using a new method of analysis of the rotational diffusion time τr as a function of methanol concentration on the basis of the Stokes-Einstein-Debye equation. The analysis of the fluorescence anisotropy parameters obtained under linearly and circularly polarized excitation and the parameter Ω has been carried out and resulted in the determination of the two-photon excitation tensor components and suggested the existence of two excitation channels with comparable intensities. These were the longitudinal excitation channel dominated by the diagonal tensor component Szz and the mixed excitation channel dominated by the off-diagonal tensor components |Sxz2 + Syz2|1/2.


Subject(s)
Methanol , NAD , Molecular Conformation , Spectrometry, Fluorescence , Water
5.
J Chem Phys ; 142(2): 024310, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25591356

ABSTRACT

We present a detailed study of two-color two-photon excited fluorescence in indole dissolved in propylene glycol. Femtosecond excitation pulses at effective wavelengths from 268 to 293.33 nm were used to populate the two lowest indole excited states (1)La and (1)Lb and polarized fluorescence was then detected. All seven molecular parameters and the two-photon polarization ratio Ω containing information on two-photon absorption dynamics, molecular lifetime τf, and rotation correlation time τrot have been determined from experiment and analyzed as a function of the excitation wavelength. The analysis of the experimental data has shown that (1)Lb-(1)La inversion occurred under the conditions of our experiment. The two-photon absorption predominantly populated the (1)La state at all excitation wavelengths but in the 287-289 nm area which contained an absorption hump of the (1)Lb state 0-0 origin. The components of the two-photon excitation tensor S were analyzed giving important information on the principal tensor axes and absorption symmetry. The results obtained are in a good agreement with the results reported by other groups. The lifetime τf and the rotation correlation time τrot showed no explicit dependence on the effective excitation wavelength. Their calculated weighted average values were found to be τf = 3.83 ± 0.14 ns and τrot = 0.74 ± 0.06 ns.

6.
J Phys Chem A ; 118(28): 5248-55, 2014 Jul 17.
Article in English | MEDLINE | ID: mdl-24964069

ABSTRACT

The paper presents experimental and theoretical studies of two-photon excitation dynamics in 2-methyl-5-tert-butyl-p-quaterphenyl (DMQ) dissolved in cyclohexane/paraffin. Experimentally, a two-color two-photon (2C2P) excitation by two femtosecond laser pulses at 800 and 400 nm has been used in combination with the time-resolved detection of polarized molecular fluorescence. The fluorescence decay was found to be two-exponential, resulting in the molecular excited state lifetime of 753 ± 10 ps and the rotational correlation time of 724 ± 45 ps. Control over the excited and fluorescent photons polarization has been used for determination from experiment of seven independent molecular parameters. The experimental data were analyzed on the basis of the recent theoretical approach [Shternin, P. S., Gericke, K.-H., and Vasyutinskii, O. S. Mol. Phys. 2010, 108, 813-825] supported by ab initio computations of the DMQ electronic structure and transition dipole moments. The results obtained imply that the two-photon absorption tensor S is mostly diagonal and that the Szz tensor component onto the molecular long axis gives the major contribution of 93%. However, it was also found that a number of different symmetry two-photon transitions related to the dipole moment components dxdz and dydz are excited in the conditions of our measurements.

7.
J Phys Chem A ; 110(16): 5371-8, 2006 Apr 27.
Article in English | MEDLINE | ID: mdl-16623464

ABSTRACT

Ab initio potential energy curves, transition dipole moments, and spin-orbit coupling matrix elements are computed for HBr. These are then used, within the framework of time-dependent quantum-mechanical wave-packet calculations, to study the photodissociation dynamics of the molecule. Total and partial integral cross sections, the branching fraction for the formation of excited-state bromine atoms Br(2P(1/2)), and the lowest order anisotropy parameters, beta, for both ground and excited-state bromine are calculated as a function of photolysis energy and compared to experimental and theoretical data determined previously. Higher order anisotropy parameters are computed for the first time for HBr and compared to recent experimental measurements. A new expression for the Re[a1(3) (parallel, perpendicular)] parameter describing coherent parallel and perpendicular production of ground-state bromine in terms of the dynamical functions is given. Although good agreement is obtained between the theoretical predictions and the experimental measurements, the discrepancies are analyzed to establish how improvements might be achieved. Insight is obtained into the nonadiabatic dynamics by comparing the results of diabatic and fully adiabatic calculations.


Subject(s)
Hydrobromic Acid/chemistry , Hydrobromic Acid/radiation effects , Light , Models, Chemical , Quantum Theory , Anisotropy , Computer Simulation , Electrons , Molecular Structure , Photochemistry
8.
J Chem Phys ; 124(9): 94305, 2006 Mar 07.
Article in English | MEDLINE | ID: mdl-16526855

ABSTRACT

Resonance-enhanced multiphoton ionization and velocity map imaging of the Cl(2P(3/2)0) fragments of BrCl photolysis at 467.16 nm have been used to obtain a complete set of orientation parameters (with ranks K = 1 and 3) describing the polarization of the electronic angular momentum. The experiments employ two geometries distinguished only by the circular or linear polarization of the photolysis laser beam. Normalized difference images constructed from the data accumulated using a right or left circularly polarized probe-laser beam, counterpropagating with the photolysis laser, were fitted to basis images corresponding to contributions from various odd-rank anisotropy parameters. Expressions are given for the difference images in terms of the K = 1 and 3 anisotropy parameters, which describe coherent and incoherent parallel and perpendicular excitation and dissociation mechanisms. The nonzero values of the anisotropy parameters are indicative of nonadiabatic dissociation dynamics, with likely contributions from flux on the A 3Pi1,B 3Pi(0+),C 1Pi1, and X 1sigma+(0+) states as well as one further omega = 1 state, all of which correlate adiabatically to Cl(2P(3/2)0) + Br(2P(3/2)0) photofragments. The magnitudes of the parameters depend both on the amplitudes of dissociative flux in these states, and also on the phases accumulated by the nuclear wave functions for different dissociation pathways.

9.
J Chem Phys ; 121(14): 6759-70, 2004 Oct 08.
Article in English | MEDLINE | ID: mdl-15473732

ABSTRACT

We present a general method for determination of the photofragment K=4 state multipoles in an ion imaging experiment. These multipoles are important for determining the full density matrix for any photofragment with j(a)> or =2. They are expressed in terms of laboratory frame anisotropy parameters that have distinct physical origins and possess characteristic angular distributions. The explicit expression for the (2+1) resonant multiphoton ionization absorption signal for the case of arbitrarily polarized probe light is derived and a procedure for isolation of the rank-4 state multipoles from all others is shown. This treatment is applied to the case of O((1)D) produced in the 193 nm photodissociation of N2O. The results show nonzero values for all K=4 anisotropy parameters, indicating the complexity of the photodissociation dynamics in this system.

SELECTION OF CITATIONS
SEARCH DETAIL
...