Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 130(20): 200801, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37267569

ABSTRACT

Determining capacities of quantum channels is a fundamental question in quantum information theory. Despite having rigorous coding theorems quantifying the flow of information across quantum channels, their capacities are poorly understood due to superadditivity effects. Studying these phenomena is important for deepening our understanding of quantum information, yet simple and clean examples of superadditive channels are scarce. Here we study a family of channels called platypus channels. Its simplest member, a qutrit channel, is shown to display superadditivity of coherent information when used jointly with a variety of qubit channels. Higher-dimensional family members display superadditivity of quantum capacity together with an erasure channel. Subject to the "spin-alignment conjecture" introduced in our companion paper [F. Leditzky, D. Leung, V. Siddhu, G. Smith, and J. A. Smolin, The platypus of the quantum channel zoo, IEEE Transactions on Information Theory (IEEE, 2023), 10.1109/TIT.2023.3245985], our results on superadditivity of quantum capacity extend to lower-dimensional channels as well as larger parameter ranges. In particular, superadditivity occurs between two weakly additive channels each with large capacity on their own, in stark contrast to previous results. Remarkably, a single, novel transmission strategy achieves superadditivity in all examples. Our results show that superadditivity is much more prevalent than previously thought. It can occur across a wide variety of channels, even when both participating channels have large quantum capacity.

2.
Phys Rev Lett ; 122(20): 200502, 2019 May 24.
Article in English | MEDLINE | ID: mdl-31172740

ABSTRACT

As quantum circuits increase in size, it is critical to establish scalable multiqubit fidelity metrics. Here we investigate, for the first time, three-qubit randomized benchmarking (RB) on a quantum device consisting of three fixed-frequency transmon qubits with pairwise microwave-activated interactions (cross-resonance). We measure a three-qubit error per Clifford of 0.106 for all-to-all gate connectivity and 0.207 for linear gate connectivity. Furthermore, by introducing mixed dimensionality simultaneous RB-simultaneous one- and two-qubit RB-we show that the three-qubit errors can be predicted from the one- and two-qubit errors. However, by introducing certain coherent errors to the gates, we can increase the three-qubit error to 0.302, an increase that is not predicted by a proportionate increase in the one- and two-qubit errors from simultaneous RB. This demonstrates the importance of multiqubit metrics, such as three-qubit RB, on evaluating overall device performance.

3.
Phys Rev Lett ; 113(3): 030502, 2014 Jul 18.
Article in English | MEDLINE | ID: mdl-25083622

ABSTRACT

Privacy is a fundamental feature of quantum mechanics. A coherently transmitted quantum state is inherently private. Remarkably, coherent quantum communication is not a prerequisite for privacy: there are quantum channels that are too noisy to transmit any quantum information reliably that can nevertheless send private classical information. Here, we ask how much private classical information a channel can transmit if it has little quantum capacity. We present a class of channels N(d) with input dimension d(2), quantum capacity Q(N(d)) ≤ 1, and private capacity P(N(d)) = log d. These channels asymptotically saturate an interesting inequality P(N) ≤ (1/2)[log d(A) + Q(N)] for any channel N with input dimension d(A) and capture the essence of privacy stripped of the confounding influence of coherence.

4.
Nat Commun ; 5: 4015, 2014 Jun 24.
Article in English | MEDLINE | ID: mdl-24958160

ABSTRACT

With favourable error thresholds and requiring only nearest-neighbour interactions on a lattice, the surface code is an error-correcting code that has garnered considerable attention. At the heart of this code is the ability to perform a low-weight parity measurement of local code qubits. Here we demonstrate high-fidelity parity detection of two code qubits via measurement of a third syndrome qubit. With high-fidelity gates, we generate entanglement distributed across three superconducting qubits in a lattice where each code qubit is coupled to two bus resonators. Via high-fidelity measurement of the syndrome qubit, we deterministically entangle the code qubits in either an even or odd parity Bell state, conditioned on the syndrome qubit state. Finally, to fully characterize this parity readout, we develop a measurement tomography protocol. The lattice presented naturally extends to larger networks of qubits, outlining a path towards fault-tolerant quantum computing.

5.
Phys Rev Lett ; 112(11): 110502, 2014 Mar 21.
Article in English | MEDLINE | ID: mdl-24702340

ABSTRACT

Entanglement is a fundamental resource for quantum information processing. In its pure form, it allows quantum teleportation and sharing classical secrets. Realistic quantum states are noisy and their usefulness is only partially understood. Bound-entangled states are central to this question--they have no distillable entanglement, yet sometimes still have a private classical key. We present a construction of bound-entangled states with a private key based on classical probability distributions. From this emerge states possessing a new classical analogue of bound entanglement, distinct from the long-sought bound information. We also find states of smaller dimensions and higher key rates than previously known. Our construction has implications for classical cryptography: we show that existing protocols are insufficient for extracting private key from our distributions due to their "bound-entangled" nature. We propose a simple extension of existing protocols that can extract a key from them.

6.
Nature ; 504(7479): 263-7, 2013 Dec 12.
Article in English | MEDLINE | ID: mdl-24240277

ABSTRACT

Information theory establishes the ultimate limits on performance for noisy communication systems. Accurate models of physical communication devices must include quantum effects, but these typically make the theory intractable. As a result, communication capacities--the maximum possible rates of data transmission--are not known, even for transmission between two users connected by an electromagnetic waveguide with Gaussian noise. Here we present an exactly solvable model of communication with a fully quantum electromagnetic field. This gives explicit expressions for all point-to-point capacities of noisy quantum channels, with implications for quantum key distribution and fibre-optic communications. We also develop a theory of quantum communication networks by solving some rudimentary models including broadcast and multiple-access channels. We compare the predictions of our model with the orthodox Gaussian model and in all cases find agreement to within a few bits. At high signal-to-noise ratios, our simple model captures the relevant physics while remaining amenable to exact solution.

7.
Nature ; 499(7457): 163-5, 2013 Jul 11.
Article in English | MEDLINE | ID: mdl-23846653

ABSTRACT

Shor's quantum factoring algorithm exponentially outperforms known classical methods. Previous experimental implementations have used simplifications dependent on knowing the factors in advance. However, as we show here, all composite numbers admit simplification of the algorithm to a circuit equivalent to flipping coins. The difficulty of a particular experiment therefore depends on the level of simplification chosen, not the size of the number factored. Valid implementations should not make use of the answer sought.

8.
Phys Rev Lett ; 108(23): 230507, 2012 Jun 08.
Article in English | MEDLINE | ID: mdl-23003934

ABSTRACT

Using unreliable or noisy components for reliable communication requires error correction. But which noise processes can support information transmission, and which are too destructive? For classical systems any channel whose output depends on its input has the capacity for communication, but the situation is substantially more complicated in the quantum setting. We find a generic test for incapacity based on any suitable forbidden transformation--a protocol for communication with a channel passing our test would also allow one to implement the associated forbidden transformation. Our approach includes both known quantum incapacity tests--positive partial transposition and antidegradability (no cloning)--as special cases, putting them both on the same footing.

9.
Phys Rev Lett ; 109(6): 060501, 2012 Aug 10.
Article in English | MEDLINE | ID: mdl-23006254

ABSTRACT

We use quantum process tomography to characterize a full universal set of all-microwave gates on two superconducting single-frequency single-junction transmon qubits. All extracted gate fidelities, including those for Clifford group generators, single-qubit π/4 and π/8 rotations, and a two-qubit controlled-not, exceed 95% (98%), without (with) subtracting state preparation and measurement errors. Furthermore, we introduce a process map representation in the Pauli basis which is visually efficient and informative. This high-fidelity gate set serves as a critical building block towards scalable architectures of superconducting qubits for error correction schemes and pushes up on the known limits of quantum gate characterization.

10.
Phys Rev Lett ; 108(7): 070502, 2012 Feb 17.
Article in English | MEDLINE | ID: mdl-22401185

ABSTRACT

We provide an efficient method for computing the maximum-likelihood mixed quantum state (with density matrix ρ) given a set of measurement outcomes in a complete orthonormal operator basis subject to Gaussian noise. Our method works by first changing basis yielding a candidate density matrix µ which may have nonphysical (negative) eigenvalues, and then finding the nearest physical state under the 2-norm. Our algorithm takes at worst O(d(4)) for the basis change plus O(d(3)) for finding ρ where d is the dimension of the quantum state. In the special case where the measurement basis is strings of Pauli operators, the basis change takes only O(d(3)) as well. The workhorse of the algorithm is a new linear-time method for finding the closest probability distribution (in Euclidean distance) to a set of real numbers summing to one.

11.
Phys Rev Lett ; 109(24): 240504, 2012 Dec 14.
Article in English | MEDLINE | ID: mdl-23368295

ABSTRACT

The control and handling of errors arising from cross talk and unwanted interactions in multiqubit systems is an important issue in quantum information processing architectures. We introduce a benchmarking protocol that provides information about the amount of addressability present in the system and implement it on coupled superconducting qubits. The protocol consists of randomized benchmarking experiments run both individually and simultaneously on pairs of qubits. A relevant figure of merit for the addressability is then related to the differences in the measured average gate fidelities in the two experiments. We present results from two similar samples with differing cross talk and unwanted qubit-qubit interactions. The results agree with predictions based on simple models of the classical cross talk and Stark shifts.

12.
Phys Rev Lett ; 109(24): 240505, 2012 Dec 14.
Article in English | MEDLINE | ID: mdl-23368296

ABSTRACT

We report a system where fixed interactions between noncomputational levels make bright the otherwise forbidden two-photon |00}→|11} transition. The system is formed by hand selection and assembly of two discrete component transmon-style superconducting qubits inside a rectangular microwave cavity. The application of a monochromatic drive tuned to this transition induces two-photon Rabi-like oscillations between the ground and doubly excited states via the Bell basis. The system therefore allows all-microwave two-qubit universal control with the same techniques and hardware required for single qubit control. We report Ramsey-like and spin echo sequences with the generated Bell states, and measure a two-qubit gate fidelity of F(g)=90% (unconstrained) and 86% (maximum likelihood estimator).

13.
Phys Rev Lett ; 107(8): 080502, 2011 Aug 19.
Article in English | MEDLINE | ID: mdl-21929152

ABSTRACT

We demonstrate an all-microwave two-qubit gate on superconducting qubits which are fixed in frequency at optimal bias points. The gate requires no additional subcircuitry and is tunable via the amplitude of microwave irradiation on one qubit at the transition frequency of the other. We use the gate to generate entangled states with a maximal extracted concurrence of 0.88, and quantum process tomography reveals a gate fidelity of 81%.

14.
Phys Rev Lett ; 103(17): 170502, 2009 Oct 23.
Article in English | MEDLINE | ID: mdl-19905738

ABSTRACT

We study the power of closed timelike curves (CTCs) and other nonlinear extensions of quantum mechanics for distinguishing nonorthogonal states and speeding up hard computations. If a CTC-assisted computer is presented with a labeled mixture of states to be distinguished--the most natural formulation--we show that the CTC is of no use. The apparent contradiction with recent claims that CTC-assisted computers can perfectly distinguish nonorthogonal states is resolved by noting that CTC-assisted evolution is nonlinear, so the output of such a computer on a mixture of inputs is not a convex combination of its output on the mixture's pure components. Similarly, it is not clear that CTC assistance or nonlinear evolution help solve hard problems if computation is defined as we recommend, as correctly evaluating a function on a labeled mixture of orthogonal inputs.

15.
Phys Rev Lett ; 103(12): 120503, 2009 Sep 18.
Article in English | MEDLINE | ID: mdl-19792417

ABSTRACT

Quantum information theory establishes the ultimate limits on communication and cryptography in terms of channel capacities for various types of information. The private capacity is particularly important because it quantifies achievable rates of quantum key distribution. We study the power of quantum channels with limited private capacity, focusing on channels that dephase in random bases. These display extensive nonadditivity of private capacity: a channel with 2logd input qubits that has a private capacity less than 2, but when used together with a second channel with zero private capacity, the joint capacity jumps to (1/2)logd. In contrast to earlier work which found nonadditivity vanishing as a fraction of input size or conditional on unproven mathematical assumptions, this provides a natural setting manifesting nonadditivity of privacy of the strongest possible sort.

16.
Phys Rev Lett ; 103(3): 030501, 2009 Jul 17.
Article in English | MEDLINE | ID: mdl-19659257

ABSTRACT

We consider two capacity quantities associated with bipartite unitary gates: the entangling and the disentangling power. Here, we prove that these capacities are different in general by constructing an explicit example of a qubit-qutrit unitary whose entangling power is maximal (2 ebits), but whose disentangling power is strictly less. A corollary is that there can be no unique ordering for unitary gates in terms of their ability to perform nonlocal tasks. Finally, we show that in large dimensions, almost all bipartite unitaries have entangling and disentangling capacities close to maximal.

17.
Phys Rev Lett ; 102(1): 010501, 2009 Jan 09.
Article in English | MEDLINE | ID: mdl-19257174

ABSTRACT

We study the power of quantum channels with little or no capacity for private communication. Because privacy is a necessary condition for quantum communication, one might expect that such channels would be of little use for transmitting quantum states. Nevertheless, we find strong evidence that there are pairs of such channels that, when used together, can transmit far more quantum information than the sum of their individual private capacities. Because quantum transmissions are necessarily private, this would imply a large violation of additivity for the private capacity. Specifically, we present channels which display either (1) a large joint quantum capacity but very small individual private capacities or (2) a severe violation of additivity for the Holevo information.

18.
Phys Rev Lett ; 100(17): 170502, 2008 May 02.
Article in English | MEDLINE | ID: mdl-18518263

ABSTRACT

A central goal in information theory and cryptography is finding simple characterizations of optimal communication rates under various restrictions and security requirements. Ideally, the optimal key rate for a quantum key distribution (QKD) protocol would be given by a single-letter formula involving optimization over a single use of an effective channel. We explore the possibility of such a formula for the simplest and most widely used QKD protocol, Bennnett-Brassard-84 with one-way classical postprocessing. We show that a conjectured single-letter formula is false, uncovering a deep ignorance about good private codes and exposing unfortunate complications in the theory of QKD. These complications are not without benefit-with added complexity comes better key rates than previously thought possible. The threshold for secure key generation improves from a bit error rate of 0.124 to 0.129.

19.
Phys Rev Lett ; 99(13): 130505, 2007 Sep 28.
Article in English | MEDLINE | ID: mdl-17930569

ABSTRACT

Most known quantum codes are additive, meaning the code can be described as the simultaneous eigenspace of an Abelian subgroup of the Pauli group. While in some scenarios such codes are strictly suboptimal, very little is understood about how to construct nonadditive codes with good performance. Here we present a family of distance 2 nonadditive quantum codes for all odd block lengths n, that has a particularly simple form. Our codes detect single qubit errors (or correct single qubit erasures) while encoding a higher dimensional space than is possible with an additive code or, for n> or =11, any previous codes. We exhibit the encoding circuits and automorphism group for our codes as well.

20.
Phys Rev Lett ; 98(3): 030501, 2007 Jan 19.
Article in English | MEDLINE | ID: mdl-17358669

ABSTRACT

A striking feature of quantum error correcting codes is that they can sometimes be used to correct more errors than they can uniquely identify. Such degenerate codes have long been known, but have remained poorly understood. We provide a heuristic for designing degenerate quantum codes for high noise rates, which is applied to generate codes that can be used to communicate over almost any Pauli channel at rates that are impossible for a nondegenerate code. The gap between nondegenerate and degenerate code performance is quite large, in contrast to the tiny magnitude of the only previous demonstration of this effect. We also identify a channel for which none of our codes outperform the best nondegenerate code and show that it is nevertheless quite unlike any channel for which nondegenerate codes are known to be optimal.

SELECTION OF CITATIONS
SEARCH DETAIL
...