Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Nanotechnology ; 33(24)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35245911

ABSTRACT

Near-infrared detection is widely used for nondestructive and non-contact inspections in various areas, including thermography, environmental and chemical analysis as well as food and medical diagnoses. Common room temperature bolometer-type infrared sensors are based on architectures in theµm range, limiting miniaturization for future highly integrated 'More than Moore' concepts. In this work, we present a first principle study on a highly scalable and CMOS compatible bolometer-type detector utilizing Ge nanowires as the thermal sensitive element. For this approach, we implemented the Ge nanowires on top of a low thermal conducting and highly absorptive membrane as a near infrared (IR) sensor element. We adopted a freestanding membrane coated with an impedance matched platinum absorber demonstrating wavelength independent absorptivity of 50% in the near to mid IR regime. The electrical characteristics of the device were measured depending on temperature and biasing conditions. A strong dependence of the resistance on the temperature was shown with a maximum temperature coefficient of resistance of -0.07 K-1atT = 100 K. Heat transport simulations using COMSOL were used to optimize the responsivity and temporal response, which are in good agreement with the experimental results. Further, lock-in measurements were used to benchmark the bolometer device at room temperature with respect to detectivity and noise equivalent power. Finally, we demonstrated that by operating the bolometer with a network of parallel nanowires, both detectivity and noise equivalent power can be effectively improved.

2.
Nanotechnology ; 32(14): 145711, 2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33276352

ABSTRACT

Group-IV based light sources are one of the missing links towards fully CMOS compatible photonic circuits. Combining both silicon process compatibility and a pseudo-direct band gap, germanium is one of the most viable candidates. To overcome the limitation of the indirect band gap and turning germanium in an efficient light emitting material, the application of strain has been proven as a promising approach. So far the experimental verification of strain induced bandgap modifications were based on optical measurements and restricted to moderate strain levels. In this work, we demonstrate a methodology enabling to apply tunable tensile strain to intrinsic germanium [Formula: see text] nanowires and simultaneously perform in situ optical as well as electrical characterization. Combining I/V measurements and µ-Raman spectroscopy at various strain levels, we determined a decrease of the resistivity by almost three orders of magnitude for strain levels of âˆ¼5%. Thereof, we calculated the strain induced band gap narrowing in remarkable accordance to recently published simulation results for moderate strain levels up to 3.6%. Deviations for ultrahigh strain values are discussed with respect to surface reconfiguration and reduced charge carrier scattering time.

3.
Nanoscale ; 10(41): 19443-19449, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30311606

ABSTRACT

Metastable germanium-tin alloys are promising materials for optoelectronics and optics. Here we present the first electrical characterization of highly crystalline Ge0.81Sn0.19 nanowires grown in a solution-based process. The investigated Ge0.81Sn0.19 nanowires reveal ohmic behavior with resistivity of the nanowire material in the range of ∼1 × 10-4Ω m. The temperature-dependent resistivity measurements demonstrate the semiconducting behavior. Moreover, failure of devices upon heating to moderate temperatures initiating material degradation has been investigated to illustrate that characterization and device operation of these highly metastable materials have to be carefully conducted.

4.
Rev Sci Instrum ; 81(11): 113701, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21133472

ABSTRACT

A scanning microwave microscope (SMM) for spatially resolved capacitance measurements in the attofarad-to-femtofarad regime is presented. The system is based on the combination of an atomic force microscope (AFM) and a performance network analyzer (PNA). For the determination of absolute capacitance values from PNA reflection amplitudes, a calibration sample of conductive gold pads of various sizes on a SiO(2) staircase structure was used. The thickness of the dielectric SiO(2) staircase ranged from 10 to 200 nm. The quantitative capacitance values determined from the PNA reflection amplitude were compared to control measurements using an external capacitance bridge. Depending on the area of the gold top electrode and the SiO(2) step height, the corresponding capacitance values, as measured with the SMM, ranged from 0.1 to 22 fF at a noise level of ~2 aF and a relative accuracy of 20%. The sample capacitance could be modeled to a good degree as idealized parallel plates with the SiO(2) dielectric sandwiched in between. The cantilever/sample stray capacitance was measured by lifting the tip away from the surface. By bringing the AFM tip into direct contact with the SiO(2) staircase structure, the electrical footprint of the tip was determined, resulting in an effective tip radius of ~60 nm and a tip-sample capacitance of ~20 aF at the smallest dielectric thickness.


Subject(s)
Electric Capacitance , Microscopy/methods , Microwaves , Nanotechnology/methods , Calibration , Microscopy, Atomic Force
5.
Rev Sci Instrum ; 78(10): 106104, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17979460

ABSTRACT

In most atomic force microscopes (AFMs), the motion of the tip is detected by the deflection of a laser beam shining onto the cantilever. AFM applications such as scanning capacitance spectroscopy or photocurrent spectroscopy, however, are severely disturbed by the intense stray light of the AFM laser. For this reason, an intercepted feedback method was developed, which allows to switch off the laser temporarily while the feedback loop keeps running. The versatility of this feedback method is demonstrated by measuring tip-force dependent Schottky barrier heights on GaAs samples.


Subject(s)
Lasers , Microscopy, Atomic Force/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Spectrum Analysis/instrumentation , Equipment Design , Equipment Failure Analysis , Feedback , Reproducibility of Results , Sensitivity and Specificity
6.
Rev Sci Instrum ; 78(6): 063706, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17614615

ABSTRACT

In this work, we introduce a two color, low intensity photocurrent feedback method for photocurrent spectroscopy utilizing an atomic force microscope (AFM). In most applications, measurements with weak optical excitations are not feasible with an AFM because the powerful AFM feedback laser severely disturbs the measurements. Therefore, we have developed a feedback system based on the pressure dependent Schottky barrier height at the tip-sample interface. The versatility of the new feedback system is demonstrated by recording high resolution photocurrent spectra on GaAsInAs heterostructures.


Subject(s)
Colorimetry/instrumentation , Microscopy, Atomic Force/instrumentation , Photochemistry/instrumentation , Spectrum Analysis/instrumentation , Color , Colorimetry/methods , Equipment Design , Equipment Failure Analysis , Feedback , Microscopy, Atomic Force/methods , Photochemistry/methods , Reproducibility of Results , Sensitivity and Specificity , Spectrum Analysis/methods
7.
Anal Chem ; 73(11): 2491-500, 2001 Jun 01.
Article in English | MEDLINE | ID: mdl-11403290

ABSTRACT

We present a novel approach to develop and process a microelectrode integrated in a standard AFM tip. The presented fabrication process allows the integration of an electroactive area at an exactly defined distance above of the end of a scanning probe tip and the subsequent remodeling and sharpening of the original AFM tip using a focused ion beam (FIB) technique (See ref 1 for patent information). Thus, the functionality of scanning electrochemical microscopy (SECM) can be integrated into any standard atomic force microscope (AFM). With the demonstrated approach, a precisely defined and constant distance between the microelectrode and the sample surface can be obtained, alternatively to the indirect determination of this distance usually applied in SECM experiments. Hence, a complete separation of the topographical information and the electrochemical signal is possible. The presented technique is a significant step toward electrochemical imaging with submicrometer electrodes as demonstrated by the development of the first integrated frame submicroelectrode.

8.
Phys Rev B Condens Matter ; 51(24): 17642-17647, 1995 Jun 15.
Article in English | MEDLINE | ID: mdl-9978793
13.
Phys Rev B Condens Matter ; 45(19): 11350-11353, 1992 May 15.
Article in English | MEDLINE | ID: mdl-10001067
14.
SELECTION OF CITATIONS
SEARCH DETAIL
...