Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Bioengineering (Basel) ; 10(12)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38135931

ABSTRACT

This case study assesses the valorization of industrial wastewater streams for bioenergy generation in an industrial munition facility. On-site pilot-scale demonstrations were performed to investigate the feasibility of algal growth in the target wastewater on a larger outdoor scale. An exploratory field study followed by an optimized one were carried out using two 1000 L open raceway ponds deployed within a greenhouse at an industrial munition facility. An online system allowed for constant monitoring of operational parameters such as temperature, pH, light intensity, and dissolved oxygen within the ponds. The original algal seed evolved into an open-air resilient consortium of green microalgae and cyanobacteria that were identified and characterized successfully. Weekly measurements of the level of nutrients in pond liquors were performed along with the determination of the algal biomass to quantitatively evaluate growth yields. After harvesting algae from the ponds, the biomass was concentrated and evaluated for oil content and biochemical methane potential (BMP) to provide an estimate of the algae-based energy production. Additionally, the correlation among biomass, culturing conditions, oil content, and BMP was evaluated. The higher average areal biomass productivity achieved during the summer months was 23.9 ± 0.9 g/m2d, with a BMP of 350 scc/gVS. An oil content of 22 wt.% was observed during operation under low nitrogen loads. Furthermore, a technoeconomic analysis and life cycle assessment demonstrated the viability of the proposed wastewater valorization scenario and aided in optimizing process performance towards further scale-up.

2.
Chemosphere ; 292: 133357, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34929271

ABSTRACT

Nitroguanidine (NQ), a component used in insensitive munitions formulations, has high solubility which often leads to highly contaminated wastewater streams. In this work, batch experiments were conducted to investigate and compare the NQ degradation by UV-based advanced oxidation processes (AOPs); hydrogen peroxide (H2O2), persulfate (PS) and peroxymonosulfate (PMS) were selected as oxidants. A preliminary evaluation of AOPs kinetics, byproducts, and potential degradation pathways were carried out and compared to NQ degradation by direct UV-C photolysis. The effects of oxidant dosage, NQ concentrations and pH were evaluated by determining the respective kinetic constants of degradation. Among the treatments applied, UV/PS showed to be a promising and effective alternative leading to faster rates of degradation respect to both oxidant dosage (25 mM) and initial NQ concentrations (≤24 mM). Nevertheless, the degradation rate of NQ by UV/PS appeared to be affected strongly by the initial pH compared to UV/H2O2 and UV/PMS, with the lowest rate overall at pH ≥ 8.0. In addition, the main byproducts from NQ degradation, guanidine and cyanamide, showed to be involved in further degradation steps only with UV/PS and UV/PMS suggesting higher degradation effectiveness of these oxidants compared UV/H2O2 and UV alone.


Subject(s)
Water Pollutants, Chemical , Water Purification , Guanidines , Hydrogen Peroxide , Oxidants , Oxidation-Reduction , Oxidative Stress , Peroxides , Ultraviolet Rays , Water Pollutants, Chemical/analysis
3.
Environ Sci Pollut Res Int ; 25(28): 28489-28499, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30088248

ABSTRACT

Wastewater streams containing hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) are subject to regulatory discharge regulations that require processing through industrial waste treatment. Thus, the development of easy-to-apply technologies for the treatment of RDX-laden wastewater streams is imperative. In the present study, the reduction of RDX by granular zero valent iron (GZVI) in batch and column experiments was investigated. Preliminary batch tests conducted under both oxic and anoxic conditions showed that after 3.0 h of reaction with GZVI, RDX was mainly converted to formaldehyde (CH2O), nitrate (NO3-), and ammonium (NH4+). Column filtration tests showed that pretreatment of the GZVI media with acid wash and low influent pH (4.0 ± 0.1) achieved 99% removal of RDX up to 5000 bed volume. BOD tests carried out on the post-treatment streams showed increased biodegradability of the treated wastewater, leading to a lower environmental impact for the final waste.


Subject(s)
Industrial Waste/analysis , Iron/chemistry , Triazines/analysis , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Filtration , Models, Theoretical
4.
Environ Sci Pollut Res Int ; 25(24): 24403-24416, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29909531

ABSTRACT

The manufacturing of insensitive munition 2,4-dinitroanisole (DNAN) generates waste streams that require treatment. DNAN has been treated previously with zero-valent iron (ZVI) and Fe-based bimetals. Use of Mg-based bimetals offers certain advantages including potential higher reactivity and relative insensitivity to pH conditions. This work reports preliminary findings of DNAN degradation by three Mg-based bimetals: Mg/Cu, Mg/Ni, and Mg/Zn. Treatment of DNAN by all three bimetals is highly effective in aqueous solutions (> 89% removal) and wastewater (> 91% removal) in comparison with treatment solely with zero-valent magnesium (ZVMg; 35% removal). Investigation of reaction byproducts supports a partial degradation pathway involving reduction of the ortho or para nitro to amino group, leading to 2-amino-4-nitroanisole (2-ANAN) and 4-amino-2-nitroanisole (4-ANAN). Further reduction of the second nitro group leads to 2,4-diaminoanisole (DAAN). These byproducts are detected in small quantities in the aqueous phase. Carbon mass balance analysis suggests near-complete closure (91%) with 12.4 and 78.4% of the total organic carbon (TOC) distributed in the aqueous and mineral bimetal phases, respectively. Post-treatment surface mineral phase analysis indicates Mg(OH)2 as the main oxidized species; oxide formation does not appear to impair treatment.


Subject(s)
Anisoles/chemistry , Metals/chemistry , Water Pollutants, Chemical/chemistry , Carbon/chemistry , Explosive Agents/chemistry , Magnesium/chemistry , Microscopy, Electron, Scanning , Oxidation-Reduction , Oxides/chemistry , Wastewater/chemistry , X-Ray Diffraction
5.
J Environ Sci (China) ; 33: 39-44, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26141876

ABSTRACT

A simple and accurate spectrophotometric method for on-site analysis of royal demolition explosive (RDX) in water samples was developed based on the Berthelot reaction. The sensitivity and accuracy of an existing spectrophotometric method was improved by: replacing toxic chemicals with more stable and safer reagents; optimizing the reagent dose and reaction time; improving color stability; and eliminating the interference from inorganic nitrogen compounds in water samples. Cation and anion exchange resin cartridges were developed and used for sample pretreatment to eliminate the effect of ammonia and nitrate on RDX analyses. The detection limit of the method was determined to be 100 µg/L. The method was used successfully for analysis of RDX in untreated industrial wastewater samples. It can be used for on-site monitoring of RDX in wastewater for early detection of chemical spills and failure of wastewater treatment systems.


Subject(s)
Spectrophotometry/methods , Triazines/chemistry , Water/chemistry , Water Pollutants, Chemical/chemistry
6.
J Hazard Mater ; 219-220: 75-81, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22520073

ABSTRACT

A reductive technology based on a completely mixed two-phase reactor (bimetallic particles and aqueous stream) was developed for the treatment of aqueous effluents contaminated with nitramines and nitro-substituted energetic materials. Experimental degradation studies were performed using solutions of three high energetics (RDX, HMX, TNT) and three insensitive-munitions components (NTO, NQ, DNAN). The study shows that, on laboratory scale, these energetic compounds are easily degraded in solution by suspensions of bimetallic particles (Fe/Ni and Fe/Cu) prepared by electro-less deposition. The type of bimetal pair (Fe/Cu or Fe/Ni) does not appear to affect the degradation kinetics of RDX, HMX, and TNT. The degradation of all components followed apparent first-order kinetics. The half-lives of all compounds except NTO were under 10 min. Additional parameters affecting the degradation processes were solids loading and initial pH.


Subject(s)
Copper/chemistry , Explosive Agents/chemistry , Iron/chemistry , Kinetics , Oxidation-Reduction
7.
J Nanosci Nanotechnol ; 8(11): 5791-800, 2008 Nov.
Article in English | MEDLINE | ID: mdl-19198307

ABSTRACT

A layer-by-layer (LbL) self-assembly strategy involving oppositely charged Ag nanoparticles was used to deposit a nanoshell of Ag nanoparticles on silica microspheres for trace chemical measurements in aqueous solutions by means of surface-enhanced Raman scattering (SERS). Positively charged Ag nanoparticles were produced by reduction of Ag nitrate in a solution mixture of branched polyethyleneimine (BPEI) and N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid (HEPES) under UV irradiation whereas negatively charged Ag nanoparticles were synthesized by the conventional citrate reduction method. The density of Ag nanoparticles in the nanoshell exhibits a strong correlation with the layer number and the nanoparticle type. Thiocyanate (SCN-) and crystal violet and were used as model positively and negatively charged analytes respectively to assess the robustness of the resultant core-shell nanostructures for SERS measurements. High sensitivity, at ppt for crystal violet and ppb for SCN-, was obtained when the surface charge of the terminating Ag layer in the LbL self-assembled nanoshell was opposite to the ionic nature of the analyte of interest due to enhanced adsorption of the analyte to the Ag nanoparticles facilitated by strong electrostatic attraction. The microsphere-nanoshell structures were all individually SERS-active, making them excellent candidate platform for integration with microfluidic systems for in situ SERS-based sensing and measurements.


Subject(s)
Crystallization/methods , Gold/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/methods , Silicon Dioxide/chemistry , Spectrum Analysis, Raman/methods , Water/analysis , Macromolecular Substances/chemistry , Materials Testing , Microspheres , Molecular Conformation , Particle Size , Solutions , Static Electricity , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...