Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 348: 123770, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38493862

ABSTRACT

The widespread detection of per- and polyfluoroalkyl substances (PFAS) in environmental compartments across the globe has raised several health concerns. Destructive technologies that aim to transform these recalcitrant PFAS into less toxic, more manageable products, are gaining impetus to address this problem. In this study, a 9 MeV electron beam accelerator was utilized to treat a suite of PFAS (perfluoroalkyl carboxylates: PFCAs, perfluoroalkyl sulfonates, and 6:2 fluorotelomer sulfonate: FTS) at environmentally relevant levels in water under different operating and water quality conditions. Although perfluorooctanoic acid and perfluorooctane sulfonic acid showed >90% degradation at <500 kGy dose at optimized conditions, a fluoride mass balance revealed that complete defluorination occurred only at/or near 1000 kGy. Non-target and suspect screening revealed additional degradation pathways differing from previously reported mechanisms. Treatment of PFAS mixtures in deionized water and groundwater matrices showed that FTS was preferentially degraded (∼90%), followed by partial degradation of long-chain PFAS (∼15-60%) and a simultaneous increase of short-chain PFAS (up to 20%) with increasing doses. The increase was much higher (up to 3.5X) in groundwaters compared to deionized water due to the presence of PFAS precursors as confirmed by total oxidizable precursor (TOP) assay. TOP assay of e-beam treated samples did not show any increase in PFCAs, confirming that e-beam was effective in also degrading precursors. This study provides an improved understanding of the mechanism of PFAS degradation and revealed that short-chain PFAS are more resistant to defluorination and their levels and regulation in the environment will determine the operating conditions of e-beam and other PFAS treatment technologies.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Electrons , Water Pollutants, Chemical/analysis , Carboxylic Acids , Fluorocarbons/analysis , Alkanesulfonates
2.
Lit Med ; 41(1): 26-44, 2023.
Article in English | MEDLINE | ID: mdl-38662030
3.
Sci Total Environ ; 784: 147053, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34088039

ABSTRACT

Microphytobenthic communities play a significant role in nutrient modulation, sediment stabilization, and primary production in seagrass beds, which provide various ecosystem services. We hypothesized that microphytobenthic communities in sediments of chronically oil-exposed seagrass beds will exhibit increased resiliency to stressors associated with oil exposure as opposed to seagrass beds never exposed to oil spills. We prepared 14-liter seawater mesocosms, each containing a submersed macrophyte Ruppia maritima collected from the Chandeleur Islands, Louisiana, and Estero Bay, Florida. Mesocosms were initially exposed to 50% water-accommodated oil fractions (WAF) and subsequently diluted by 50% with daily artificial seawater exchanges over 8 days to simulate tidal dilution. High-throughput amplicon sequencing based on 23S rRNA gene targeting cyanobacteria and chloroplasts of eukaryotic microphytobenthos was conducted to assess the impact of oiling on microphytobenthic communities with additional assessment via microscopy. High-throughput sequencing in combination with traditional microscopic analysis provided a robust examination in which both methods roughly complemented each other. Distinct succession patterns were detected in benthic algal communities of chronically oil-exposed (Louisiana) versus unexposed (Florida) seagrass bed sediments. The impact of oiling in microphytobenthos across all samples showed that benthic diatoms dominated all algal communities with sample percentages ranging from 42 to 97%, followed by cyanobacteria (2 to 50%). It is noteworthy that drastic changes in microphytobenthic community structure in terms of the larger taxonomic level were not observed, rather change occurred at the phylotype level. These results were also confirmed by microscopy. Similarity percentages (SIMPER) analysis identified seven phylotypes (Cyanobacteria, Bacillariophyceae, and Mediophyceae) in the Louisiana samples and one phylotype (Bacillariophyceae) in the Florida samples that increased in relative sequence abundance after oil exposure. The detailed phylotype analysis identifying sentinel microphytobenthic indicators provides a base for future research on benthic microalgae response to ecosystem disturbance.


Subject(s)
Petroleum Pollution , Ecosystem , Florida , Geologic Sediments , Louisiana , Petroleum Pollution/analysis
4.
Molecules ; 25(10)2020 May 13.
Article in English | MEDLINE | ID: mdl-32414058

ABSTRACT

Complexes of Fe(III) that contain a triazacyclononane (TACN) macrocycle, two pendant hydroxyl groups, and a third ancillary pendant show promise as MRI contrast agents. The ancillary group plays an important role in tuning the solution relaxivity of the Fe(III) complex and leads to large changes in MRI contrast enhancement in mice. Two new Fe(III) complexes, one with a third coordinating hydroxypropyl pendant, Fe(L2), and one with an anionic non-coordinating sulfonate group, Fe(L1)(OH2), are compared. Both complexes have a deprotonated hydroxyl group at neutral pH and electrode potentials representative of a stabilized trivalent iron center. The r1 relaxivity of the Fe(L1)(OH2) complex is double that of the saturated complex, Fe(L2), at 4.7 T, 37 °C in buffered solutions. However, variable-temperature 17O-NMR experiments show that the inner-sphere water of Fe(L1)(OH2) does not exchange rapidly with bulk water under these conditions. The pendant sulfonate group in Fe(L1)(OH2) confers high solubility to the complex in comparison to Fe(L2) or previously studied analogues with benzyl groups. Dynamic MRI studies of the two complexes showed major differences in their pharmacokinetics clearance rates compared to an analogue containing a benzyl ancillary group. Rapid blood clearance and poor binding to serum albumin identify Fe(L1)(OH2) for development as an extracellular fluid contrast agent.


Subject(s)
Contrast Media , Ferric Compounds , Macrocyclic Compounds , Magnetic Resonance Imaging , Animals , Contrast Media/chemistry , Contrast Media/pharmacokinetics , Contrast Media/pharmacology , Ferric Compounds/chemistry , Ferric Compounds/pharmacokinetics , Ferric Compounds/pharmacology , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/pharmacokinetics , Macrocyclic Compounds/pharmacology , Mice , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL
...