Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35754523

ABSTRACT

Understanding cardiac arrhythmic mechanisms and developing new strategies to control and terminate them using computer simulations requires realistic physiological cell models with anatomically accurate heart structures. Furthermore, numerical simulations must be fast enough to study and validate model and structure parameters. Here, we present an interactive parallel approach for solving detailed cell dynamics in high-resolution human heart structures with a local PC's GPU. In vitro human heart MRI scans were manually segmented to produce 3D structures with anatomically realistic electrophysiology. The Abubu.js library was used to create an interactive code to solve the OVVR human ventricular cell model and the FDA extension of the model in the human MRI heart structures, allowing the simulation of reentrant waves and investigation of their dynamics in real time. Interactive simulations of a physiological cell model in a detailed anatomical human heart reveals propagation of waves through the fine structures of the trabeculae and pectinate muscle that can perpetuate arrhythmias, thereby giving new insights into effects that may need to be considered when planning ablation and other defibrillation methods.

2.
IEEE/ACM Trans Comput Biol Bioinform ; 17(6): 1981-1993, 2020.
Article in English | MEDLINE | ID: mdl-31027048

ABSTRACT

We present a fully closed-loop design for an artificial pancreas (AP) that regulates the delivery of insulin for the control of Type I diabetes. Our AP controller operates in a fully automated fashion, without requiring any manual interaction with the patient (e.g., in the form of meal announcements). A major obstacle to achieving closed-loop insulin control are the "unknown disturbances" related to various aspects of a patient's daily behavior, especially meals and physical activity. Such disturbances can significantly affect the patient's blood glucose levels. To handle such uncertainties, we present a data-driven, robust, model-predictive control framework in which we capture a wide range of individual meal and exercise patterns using uncertainty sets learned from historical data. These uncertainty sets are then used in the insulin controller to achieve automated, precise, and personalized insulin therapy. We provide an extensive in silico evaluation of our robust AP design, demonstrating the potential of the approach. In particular, without the benefit of explicit meal announcements, our approach can regulate glucose levels for large clusters of meal profiles learned from population-wide survey data and cohorts of virtual patients, even in the presence of high carbohydrate disturbances.


Subject(s)
Machine Learning , Models, Statistical , Pancreas, Artificial , Blood Glucose/physiology , Diabetes Mellitus, Type 1/therapy , Humans , Insulin Infusion Systems
3.
IEEE/ACM Trans Comput Biol Bioinform ; 16(5): 1586-1597, 2019.
Article in English | MEDLINE | ID: mdl-30530334

ABSTRACT

Implantable medical devices are safety-critical systems whose incorrect operation can jeopardize a patient's health, and whose algorithms must meet tight platform constraints like memory consumption and runtime. In particular, we consider here the case of implantable cardioverter defibrillators, where peak detection algorithms and various others discrimination algorithms serve to distinguish fatal from non-fatal arrhythmias in a cardiac signal. Motivated by the need for powerful formal methods to reason about the performance of arrhythmia detection algorithms, we show how to specify all these algorithms using Quantitative Regular Expressions (QREs). QRE is a formal language to express complex numerical queries over data streams, with provable runtime and memory consumption guarantees. We show that QREs are more suitable than classical temporal logics to express in a concise and easy way a range of peak detectors (in both the time and wavelet domains) and various discriminators at the heart of today's arrhythmia detection devices. The proposed formalization also opens the way to formal analysis and rigorous testing of these detectors' correctness and performance, alleviating the regulatory burden on device developers when modifying their algorithms. We demonstrate the effectiveness of our approach by executing QRE-based monitors on real patient data on which they yield results on par with the results reported in the medical literature.


Subject(s)
Arrhythmias, Cardiac/diagnosis , Electrocardiography/methods , Signal Processing, Computer-Assisted , Algorithms , Arrhythmias, Cardiac/physiopathology , Humans
4.
Article in English | MEDLINE | ID: mdl-23929858

ABSTRACT

We present the Spiral Classification Algorithm (SCA), a fast and accurate algorithm for classifying electrical spiral waves and their associated breakup in cardiac tissues. The classification performed by SCA is an essential component of the detection and analysis of various cardiac arrhythmic disorders, including ventricular tachycardia and fibrillation. Given a digitized frame of a propagating wave, SCA constructs a highly accurate representation of the front and the back of the wave, piecewise interpolates this representation with cubic splines, and subjects the result to an accurate curvature analysis. This analysis is more comprehensive than methods based on spiral-tip tracking, as it considers the entire wave front and back. To increase the smoothness of the resulting symbolic representation, the SCA uses weighted overlapping of adjacent segments which increases the smoothness at join points. SCA has been applied to a number of representative types of spiral waves, and, for each type, a distinct curvature evolution in time (signature) has been identified. Distinct signatures have also been identified for spiral breakup. These results represent a significant first step in automatically determining parameter ranges for which a computational cardiac-cell network accurately reproduces a particular kind of cardiac arrhythmia, such as ventricular fibrillation.


Subject(s)
Algorithms , Arrhythmias, Cardiac/physiopathology , Heart/physiology , Models, Cardiovascular , Signal Processing, Computer-Assisted , Computer Simulation , Electrocardiography , Heart/physiopathology , Humans
5.
Adv Physiol Educ ; 35(4): 427-37, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22139782

ABSTRACT

As part of a 3-wk intersession workshop funded by a National Science Foundation Expeditions in Computing award, 15 undergraduate students from the City University of New York(1) collaborated on a study aimed at characterizing the voltage dynamics and arrhythmogenic behavior of cardiac cells for a broad range of physiologically relevant conditions using an in silico model. The primary goal of the workshop was to cultivate student interest in computational modeling and analysis of complex systems by introducing them through lectures and laboratory activities to current research in cardiac modeling and by engaging them in a hands-on research experience. The success of the workshop lay in the exposure of the students to active researchers and experts in their fields, the use of hands-on activities to communicate important concepts, active engagement of the students in research, and explanations of the significance of results as the students generated them. The workshop content addressed how spiral waves of electrical activity are initiated in the heart and how different parameter values affect the dynamics of these reentrant waves. Spiral waves are clinically associated with tachycardia, when the waves remain stable, and with fibrillation, when the waves exhibit breakup. All in silico experiments were conducted by simulating a mathematical model of cardiac cells on graphics processing units instead of the standard central processing units of desktop computers. This approach decreased the run time for each simulation to almost real time, thereby allowing the students to quickly analyze and characterize the simulated arrhythmias. Results from these simulations, as well as some of the background and methodology taught during the workshop, is presented in this article along with the programming code and the explanations of simulation results in an effort to allow other teachers and students to perform their own demonstrations, simulations, and studies.


Subject(s)
Arrhythmias, Cardiac/physiopathology , Computer Graphics , Computer Simulation , Electrophysiologic Techniques, Cardiac , Heart Conduction System/physiopathology , Models, Cardiovascular , Physiology/education , Teaching/methods , Arrhythmias, Cardiac/diagnosis , Comprehension , Electronic Data Processing , Feedback , Humans , Learning , Surveys and Questionnaires , Time Factors
6.
BMC Bioinformatics ; 9 Suppl 2: S3, 2008 Mar 26.
Article in English | MEDLINE | ID: mdl-18387205

ABSTRACT

BACKGROUND: Brain, heart and skeletal muscle share similar properties of excitable tissue, featuring both discrete behavior (all-or-nothing response to electrical activation) and continuous behavior (recovery to rest follows a temporal path, determined by multiple competing ion flows). Classical mathematical models of excitable cells involve complex systems of nonlinear differential equations. Such models not only impair formal analysis but also impose high computational demands on simulations, especially in large-scale 2-D and 3-D cell networks. In this paper, we show that by choosing Hybrid Automata as the modeling formalism, it is possible to construct a more abstract model of excitable cells that preserves the properties of interest while reducing the computational effort, thereby admitting the possibility of formal analysis and efficient simulation. RESULTS: We have developed CellExcite, a sophisticated simulation environment for excitable-cell networks. CellExcite allows the user to sketch a tissue of excitable cells, plan the stimuli to be applied during simulation, and customize the diffusion model. CellExcite adopts Hybrid Automata (HA) as the computational model in order to efficiently capture both discrete and continuous excitable-cell behavior. CONCLUSIONS: The CellExcite simulation framework for multicellular HA arrays exhibits significantly improved computational efficiency in large-scale simulations, thus opening the possibility for formal analysis based on HA theory. A demo of CellExcite is available at http://www.cs.sunysb.edu/~eha/.


Subject(s)
Action Potentials/physiology , Heart Conduction System/physiology , Models, Biological , Myocytes, Cardiac/physiology , Nerve Net/physiology , Neurons/physiology , Software , Algorithms , Animals , Computer Simulation , Humans , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...