Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Syst ; 12(4): 304-323.e13, 2021 04 21.
Article in English | MEDLINE | ID: mdl-33740397

ABSTRACT

Complete kinetic models are pervasive in chemistry but lacking in biological systems. We encoded the complete kinetics of infection for coxsackievirus B3 (CVB3), a compact and fast-acting RNA virus. The model consists of separable, detailed modules describing viral binding-delivery, translation-replication, and encapsidation. Specific module activities are dampened by the type I interferon response to viral double-stranded RNAs (dsRNAs), which is itself disrupted by viral proteinases. The experimentally validated kinetics uncovered that cleavability of the dsRNA transducer mitochondrial antiviral signaling protein (MAVS) becomes a stronger determinant of viral outcomes when cells receive supplemental interferon after infection. Cleavability is naturally altered in humans by a common MAVS polymorphism, which removes a proteinase-targeted site but paradoxically elevates CVB3 infectivity. These observations are reconciled with a simple nonlinear model of MAVS regulation. Modeling complete kinetics is an attainable goal for small, rapidly infecting viruses and perhaps viral pathogens more broadly. A record of this paper's transparent peer review process is included in the Supplemental information.


Subject(s)
Enterovirus B, Human/genetics , Host-Pathogen Interactions/genetics , Humans , Kinetics
2.
Sci Rep ; 10(1): 15808, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32978500

ABSTRACT

Retinal diseases are frequently characterized by the accumulation of excessive scar tissue found throughout the neural retina. However, the pathophysiology of retinal fibrosis remains poorly understood, and the cell types that contribute to the fibrotic response are incompletely defined. Here, we show that myofibroblast differentiation of mural cells contributes directly to retinal fibrosis. Using lineage tracing technology, we demonstrate that after chemical ocular injury, Myh11+ mural cells detach from the retinal microvasculature and differentiate into myofibroblasts to form an epiretinal membrane. Inhibition of TGFßR attenuates Myh11+ retinal mural cell myofibroblast differentiation, and diminishes the subsequent formation of scar tissue on the surface of the retina. We demonstrate retinal fibrosis within a murine model of oxygen-induced retinopathy resulting from the intravitreal injection of adipose Myh11-derived mesenchymal stem cells, with ensuing myofibroblast differentiation. In this model, inhibiting TGFßR signaling does not significantly alter myofibroblast differentiation and collagen secretion within the retina. This work shows the complexity of retinal fibrosis, where scar formation is regulated both by TGFßR and non-TGFßR dependent processes involving mural cells and derived mesenchymal stem cells. It also offers a cautionary note on the potential deleterious, pro-fibrotic effects of exogenous MSCs once intravitreally injected into clinical patients.


Subject(s)
Cell Differentiation , Cicatrix/pathology , Fibrosis/pathology , Mesenchymal Stem Cells/pathology , Myofibroblasts/pathology , Myosin Heavy Chains/metabolism , Retinal Diseases/pathology , Animals , Cells, Cultured , Cicatrix/metabolism , Female , Fibrosis/metabolism , Male , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Myofibroblasts/metabolism , Retinal Diseases/metabolism , Signal Transduction
3.
Sci Rep ; 9(1): 19409, 2019 12 19.
Article in English | MEDLINE | ID: mdl-31857650

ABSTRACT

Protein kinases are enzymes whose abundance, protein-protein interactions, and posttranslational modifications together determine net signaling activity in cells. Large-scale data on cellular kinase activity are limited, because existing assays are cumbersome, poorly sensitive, low throughput, and restricted to measuring one kinase at a time. Here, we surmount the conventional hurdles of activity measurement with a multiplexing approach that leverages the selectivity of individual kinase-substrate pairs. We demonstrate proof of concept by designing an assay that jointly measures activity of five pleiotropic signaling kinases: Akt, IκB kinase (IKK), c-jun N-terminal kinase (JNK), mitogen-activated protein kinase (MAPK)-extracellular regulated kinase kinase (MEK), and MAPK-activated protein kinase-2 (MK2). The assay operates in a 96-well format and specifically measures endogenous kinase activation with coefficients of variation less than 20%. Multiplex tracking of kinase-substrate pairs reduces input requirements by 25-fold, with ~75 µg of cellular extract sufficient for fiveplex activity profiling. We applied the assay to monitor kinase signaling during coxsackievirus B3 infection of two different host-cell types and identified multiple differences in pathway dynamics and coordination that warrant future study. Because the Akt-IKK-JNK-MEK-MK2 pathways regulate many important cellular functions, the fiveplex assay should find applications in inflammation, environmental-stress, and cancer research.


Subject(s)
Enzyme Assays/methods , Protein Kinases/metabolism , Amino Acid Sequence , Biocatalysis , Enterovirus/physiology , Genes, Reporter , HT29 Cells , High-Throughput Screening Assays , Humans , Insulin/pharmacology , Peptides/metabolism , Phosphorylation , Protein Kinases/chemistry , Reproducibility of Results , Substrate Specificity , Tumor Necrosis Factor-alpha/pharmacology
4.
Mol Cell Proteomics ; 16(4 suppl 1): S244-S262, 2017 04.
Article in English | MEDLINE | ID: mdl-28174228

ABSTRACT

Cellular responses to stimuli involve dynamic and localized changes in protein kinases and phosphatases. Here, we report a generalized functional assay for high-throughput profiling of multiple protein phosphatases with subcellular resolution and apply it to analyze coxsackievirus B3 (CVB3) infection counteracted by interferon signaling. Using on-plate cell fractionation optimized for adherent cells, we isolate protein extracts containing active endogenous phosphatases from cell membranes, the cytoplasm, and the nucleus. The extracts contain all major classes of protein phosphatases and catalyze dephosphorylation of plate-bound phosphosubstrates in a microtiter format, with cellular activity quantified at the end point by phosphospecific ELISA. The platform is optimized for six phosphosubstrates (ERK2, JNK1, p38α, MK2, CREB, and STAT1) and measures specific activities from extracts of fewer than 50,000 cells. The assay was exploited to examine viral and antiviral signaling in AC16 cardiomyocytes, which we show can be engineered to serve as susceptible and permissive hosts for CVB3. Phosphatase responses were profiled in these cells by completing a full-factorial experiment for CVB3 infection and type I/II interferon signaling. Over 850 functional measurements revealed several independent, subcellular changes in specific phosphatase activities. During CVB3 infection, we found that type I interferon signaling increases subcellular JNK1 phosphatase activity, inhibiting nuclear JNK1 activity that otherwise promotes viral protein synthesis in the infected host cell. Our assay provides a high-throughput way to capture perturbations in important negative regulators of intracellular signal-transduction networks.


Subject(s)
Coxsackievirus Infections/metabolism , Myocytes, Cardiac/virology , Phosphoprotein Phosphatases/metabolism , Proteomics/methods , Cell Line , Cell Membrane/metabolism , Cell Nucleus/metabolism , Coxsackievirus Infections/virology , Cytoplasm/metabolism , HT29 Cells , HeLa Cells , Humans , Myocytes, Cardiac/metabolism , Phosphorylation , Protein Interaction Maps , Signal Transduction
5.
Front Pharmacol ; 7: 457, 2016.
Article in English | MEDLINE | ID: mdl-27965578

ABSTRACT

Reactive oxygen species (ROS) are widely involved in intracellular signaling and human pathologies, but their precise roles have been difficult to enumerate and integrate holistically. The context- and dose-dependent intracellular effects of ROS can lead to contradictory experimental results and confounded interpretations. For example, lower levels of ROS promote cell signaling and proliferation, whereas abundant ROS cause overwhelming damage to biomolecules and cellular apoptosis or senescence. These complexities raise the question of whether the many facets of ROS biology can be joined under a common mechanistic framework using computational modeling. Here, we take inventory of some current models for ROS production or ROS regulation of signaling pathways. Several models captured non-intuitive observations or made predictions that were later verified by experiment. There remains a need for systems-level analyses that jointly incorporate ROS production, handling, and modulation of multiple signal-transduction cascades.

SELECTION OF CITATIONS
SEARCH DETAIL
...