Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Trends Biotechnol ; 40(7): 858-874, 2022 07.
Article in English | MEDLINE | ID: mdl-35031132

ABSTRACT

Advances in genetic engineering, combined with the development of optical technologies, have allowed optogenetics to broaden its area of possible applications in recent years. However, the application of optogenetic tools in industry, including biotechnology and the production of biomaterials, is still limited, because each practical task requires the engineering of a specific optogenetic system. In this review, we discuss recent advances in the use of optogenetic tools in the production of biofuels and valuable chemicals, the synthesis of biomedical and polymer materials, and plant agrobiology. We also offer a comprehensive analysis of the properties and industrial applicability of light-controlled and other smart biomaterials. These data allow us to outline the prospects for the future use of optogenetics in bioindustry.


Subject(s)
Biocompatible Materials , Optogenetics , Biofuels , Biotechnology , Genetic Engineering
2.
Front Mol Biosci ; 9: 1100032, 2022.
Article in English | MEDLINE | ID: mdl-36699703

ABSTRACT

Ferredoxins are small iron-sulfur proteins and key players in essential metabolic pathways. Among all types, 3Fe-4S ferredoxins are less studied mostly due to anaerobic requirements. Their complexes with cytochrome P450 redox partners have not been structurally characterized. In the present work, we solved the structures of both 3Fe-4S ferredoxins from M. tuberculosis-Fdx alone and the fusion FdxE-CYP143. Our SPR analysis demonstrated a high-affinity binding of FdxE to CYP143. According to SAXS data, the same complex is present in solution. The structure reveals extended multipoint interactions and the shape/charge complementarity of redox partners. Furthermore, FdxE binding induced conformational changes in CYP143 as evident from the solved CYP143 structure alone. The comparison of FdxE-CYP143 and modeled Fdx-CYP51 complexes further revealed the specificity of ferredoxins. Our results illuminate the diversity of electron transfer complexes for the production of different secondary metabolites.

3.
Mar Drugs ; 19(1)2021 Jan 17.
Article in English | MEDLINE | ID: mdl-33477357

ABSTRACT

Arthritis is a widespread inflammatory disease associated with progressive articular surface degradation, ongoing pain, and hyperalgesia causing the development of functional limitations and disability. TRPV1 channel is one of the high-potential targets for the treatment of inflammatory diseases. Polypeptide APHC3 from sea anemone Heteractis crispa is a mode-selective TRPV1 antagonist that causes mild hypothermia and shows significant anti-inflammatory and analgesic activity in different models of pain. We evaluated the anti-inflammatory properties of APHC3 in models of monosodium iodoacetate (MIA)-induced osteoarthritis and complete Freund's adjuvant (CFA)-induced rheumatoid monoarthritis in comparison with commonly used non-steroidal anti-inflammatory drugs (NSAIDs) such as diclofenac, ibuprofen, and meloxicam. Subcutaneous administration of APHC3 (0.1 mg/kg) significantly reversed joint swelling, disability, grip strength impairment, and thermal and mechanical hypersensitivity. The effect of APHC3 was equal to or better than that of reference NSAIDs. Protracted treatment with APHC3 decreased IL-1b concentration in synovial fluid, reduced inflammatory changes in joints, and prevented the progression of cartilage degradation. Therefore, polypeptide APHC3 has the potential to be an analgesic and anti-inflammatory substance for the alleviation of arthritis symptoms.


Subject(s)
Analgesics/pharmacology , Anti-Inflammatory Agents/pharmacology , Arthritis, Experimental/drug therapy , Cnidarian Venoms/pharmacology , Intercellular Signaling Peptides and Proteins/pharmacology , Analgesics/isolation & purification , Animals , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Arthritis, Experimental/physiopathology , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/physiopathology , Cnidarian Venoms/isolation & purification , Disease Models, Animal , Disease Progression , Intercellular Signaling Peptides and Proteins/isolation & purification , Male , Osteoarthritis/drug therapy , Osteoarthritis/physiopathology , Pain/drug therapy , Pain/physiopathology , Rats , Rats, Sprague-Dawley , TRPV Cation Channels/antagonists & inhibitors
4.
J Mol Biol ; 433(4): 166763, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33359098

ABSTRACT

Mycobacterium tuberculosis (Mtb) infection is among top ten causes of death worldwide, and the number of drug-resistant strains is increasing. The direct interception of human immune signaling molecules by Mtb remains elusive, limiting drug discovery. Oxysterols and secosteroids regulate both innate and adaptive immune responses. Here we report a functional, structural, and bioinformatics study of Mtb enzymes initiating cholesterol catabolism and demonstrated their interrelation with human immunity. We show that these enzymes metabolize human immune oxysterol messengers. Rv2266 - the most potent among them - can also metabolize vitamin D3 (VD3) derivatives. High-resolution structures show common patterns of sterols binding and reveal a site for oxidative attack during catalysis. Finally, we designed a compound that binds and inhibits three studied proteins. The compound shows activity against Mtb H37Rv residing in macrophages. Our findings contribute to molecular understanding of suppression of immunity and suggest that Mtb has its own transformation system resembling the human phase I drug-metabolizing system.


Subject(s)
Energy Metabolism , Host-Pathogen Interactions , Mycobacterium tuberculosis/immunology , Tuberculosis/immunology , Tuberculosis/metabolism , 3-Hydroxysteroid Dehydrogenases/chemistry , 3-Hydroxysteroid Dehydrogenases/metabolism , Catalysis , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Enzyme Activation , Host-Pathogen Interactions/immunology , Humans , Immunity , Isoenzymes , Models, Molecular , Oxysterols/chemistry , Oxysterols/metabolism , Recombinant Proteins , Structure-Activity Relationship , Tuberculosis/microbiology
5.
Int J Mol Sci ; 21(3)2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32023820

ABSTRACT

Before utilization in biomedical diagnosis, therapeutic treatment, and biotechnology, the diverse variety of peptides and proteins must be preliminarily purified and thoroughly characterized. The recombinant DNA technology and heterologous protein expression have helped simplify the isolation of targeted polypeptides at high purity and their structure-function examinations. Recombinant protein expression in Escherichia coli, the most-established heterologous host organism, has been widely used to produce proteins of commercial and fundamental research interests. Nonetheless, many peptides/proteins are still difficult to express due to their ability to slow down cell growth or disrupt cellular metabolism. Besides, special modifications are often required for proper folding and activity of targeted proteins. The cell-free (CF) or in vitro recombinant protein synthesis system enables the production of such difficult-to-obtain molecules since it is possible to adjust reaction medium and there is no need to support cellular metabolism and viability. Here, we describe E. coli-based CF systems, the optimization steps done toward the development of highly productive and cost-effective CF methodology, and the modification of an in vitro approach required for difficult-to-obtain protein production.


Subject(s)
Escherichia coli/metabolism , Protein Engineering/methods , Cell-Free System , Protein Biosynthesis , Protein Processing, Post-Translational , Recombinant Proteins/metabolism
6.
Biomolecules ; 9(7)2019 06 28.
Article in English | MEDLINE | ID: mdl-31261745

ABSTRACT

More than two decades ago a general method to genetically encode noncanonical or unnatural amino acids (NAAs) with diverse physical, chemical, or biological properties in bacteria, yeast, animals and mammalian cells was developed. More than 200 NAAs have been incorporated into recombinant proteins by means of non-endogenous aminoacyl-tRNA synthetase (aa-RS)/tRNA pair, an orthogonal pair, that directs site-specific incorporation of NAA encoded by a unique codon. The most established method to genetically encode NAAs in Escherichiacoli is based on the usage of the desired mutant of Methanocaldococcusjanaschii tyrosyl-tRNA synthetase (MjTyrRS) and cognate suppressor tRNA. The amber codon, the least-used stop codon in E. coli, assigns NAA. Until very recently the genetic code expansion technology suffered from a low yield of targeted proteins due to both incompatibilities of orthogonal pair with host cell translational machinery and the competition of suppressor tRNA with release factor (RF) for binding to nonsense codons. Here we describe the latest progress made to enhance nonsense suppression in E. coli with the emphasis on the improved expression vectors encoding for an orthogonal aa-RA/tRNA pair, enhancement of aa-RS and suppressor tRNA efficiency, the evolution of orthogonal EF-Tu and attempts to reduce the effect of RF1.


Subject(s)
Amino Acids/chemistry , Escherichia coli Proteins/chemistry , Amino Acids/genetics , Amino Acids/metabolism , Binding Sites , Codon, Nonsense/genetics , Escherichia coli Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
7.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(9): 853-868, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28504210

ABSTRACT

The oleaginous microalga Lobosphaera incisa (Trebouxiophyceae, Chlorophyta) contains arachidonic acid (ARA, 20:4 n-6) in all membrane glycerolipids and in the storage lipid triacylglycerol. The optimal growth temperature of the wild-type (WT) strain is 25°C; chilling temperatures (≤15°C) slow its growth. This effect is more pronounced in the delta-5-desaturase ARA-deficient mutant P127, in which ARA is replaced with dihomo-γ-linolenic acid (DGLA, 20:3 n-6). In nutrient-replete cells grown at 25°C, the major chloroplast lipid monogalactosylglycerol (MGDG) was dominated by C18/C16 species in both strains. Yet ARA constituted over 10% of the total fatty acids in the WT MGDG as a component of C20/C18 and C20/C20 species, whereas DGLA was only a minor component of MGDG in P127. Both strains increased the percentage of 18:3 n-3 in membrane lipids under chilling temperatures. The temperature downshift led to a dramatic increase in triacylglycerol at the expense of chloroplast lipids. WT and P127 showed a similarly high photochemical quantum yield of photosystem II, whereas non-photochemical quenching (NPQ) and violaxanthin de-epoxidation were drastically higher in P127, especially at 15°C. Fluorescence anisotropy measurements indicated that ARA-containing MGDG might contribute to sustaining chloroplast membrane fluidity upon dropping to the chilling temperature. We hypothesize that conformational changes in chloroplast membranes and increased rigidity of the ARA-deficient MGDG of P127 at chilling temperatures are not compensated by trienoic fatty acids. This might 'lock' violaxanthin de-epoxidase in the activated state causing high constitutive NPQ and alleviate the risk of photodamage under chilling conditions in the mutant.


Subject(s)
Arachidonic Acid/metabolism , Microalgae/metabolism , Microalgae/physiology , Stress, Physiological/physiology , Chloroplasts/metabolism , Chloroplasts/physiology , Cold Temperature , Delta-5 Fatty Acid Desaturase , Fatty Acid Desaturases/metabolism , Light , Lipids/physiology , Membrane Fluidity/physiology , Photosystem II Protein Complex/physiology , Triglycerides/metabolism , Xanthophylls/metabolism
8.
PLoS One ; 8(7): e68363, 2013.
Article in English | MEDLINE | ID: mdl-23844190

ABSTRACT

Using a commercial protein expression system, we sought the crucial elements and conditions for the expression of proteins with genetically encoded unnatural amino acids. By identifying the most important translational components, we were able to increase suppression efficiency to 55% and to increase mutant protein yields to levels higher than achieved with wild type expression (120%), reaching over 500 µg/mL of translated protein (comprising 25 µg in 50 µL of reaction mixture). To our knowledge, these results are the highest obtained for both in vivo and in vitro systems. We also demonstrated that efficiency of nonsense suppression depends greatly on the nucleotide following the stop codon. Insights gained in this thorough analysis could prove useful for augmenting in vivo expression levels as well.


Subject(s)
Amino Acids/metabolism , Cell-Free System/metabolism , Protein Biosynthesis , Recombinant Proteins/metabolism , Amino Acid Sequence , Amino Acids/chemistry , Amino Acids/genetics , Binding Sites/genetics , Blotting, Western , Codon, Terminator/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Molecular Sequence Data , Molecular Structure , Mutation , Recombinant Proteins/genetics , Tandem Mass Spectrometry , Tyrosine/genetics , Tyrosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...