Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 18333, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37884588

ABSTRACT

Wireless radio communications provide a backbone to our technological civilization. However, radio communications are widely believed to be impossible in many situations where radios are surrounded by conductive media, such as underwater or underground, thus making ocean exploration difficult and creating well-known mine safety problems. In addition, since most imaging techniques rely on electromagnetic waves, the difficulty of electromagnetic wave propagation through biological tissues, which are mostly made of water, also severely limits bioimaging. Here we show that contrary to common beliefs, radio signals may be efficiently propagated through water over useful distances. Both radio communication and radio imaging through water may be enabled by superlensing of surface electromagnetic waves propagating along the water surface. We have demonstrated underwater radio communication over distances of several hundred skin depth in the MHz frequency range, which would require sensitivity below 10-100 W in a conventional radio communication channel. We also demonstrated subwavelength super-resolution radio imaging in the GHz range by using water surface as a superlens. Our results indicate new ways to perform bioimaging, as well as marine life safe techniques of wireless radio communication and imaging underwater, which are essential for ocean and seafloor exploration. We also anticipate that the developed techniques will provide invaluable means of studying the extraterrestrial water worlds, such as potentially inhabitable Jovian moons.

2.
Laser Photon Rev ; 17(12)2023 Dec.
Article in English | MEDLINE | ID: mdl-38883699

ABSTRACT

Label-free super-resolution (LFSR) imaging relies on light-scattering processes in nanoscale objects without a need for fluorescent (FL) staining required in super-resolved FL microscopy. The objectives of this Roadmap are to present a comprehensive vision of the developments, the state-of-the-art in this field, and to discuss the resolution boundaries and hurdles which need to be overcome to break the classical diffraction limit of the LFSR imaging. The scope of this Roadmap spans from the advanced interference detection techniques, where the diffraction-limited lateral resolution is combined with unsurpassed axial and temporal resolution, to techniques with true lateral super-resolution capability which are based on understanding resolution as an information science problem, on using novel structured illumination, near-field scanning, and nonlinear optics approaches, and on designing superlenses based on nanoplasmonics, metamaterials, transformation optics, and microsphere-assisted approaches. To this end, this Roadmap brings under the same umbrella researchers from the physics and biomedical optics communities in which such studies have often been developing separately. The ultimate intent of this paper is to create a vision for the current and future developments of LFSR imaging based on its physical mechanisms and to create a great opening for the series of articles in this field.

3.
Opt Lett ; 44(9): 2224-2227, 2019 May 01.
Article in English | MEDLINE | ID: mdl-31042189

ABSTRACT

The Unruh effect is the prediction that an accelerating object perceives its surroundings as a bath of thermal radiation, even if it accelerates in vacuum. The Unruh effect is believed to be very difficult to observe in an experiment, since an observer accelerating at g=9.8 m/s2 should see a vacuum temperature of only 4×10-20 K. Here we demonstrate that photons in metamaterial waveguides may behave as massive quasi-particles accelerating at up to 1024 g, which is about 12 orders of magnitude larger than the surface acceleration near a stellar black hole. These record high accelerations may enable experimental studies of the Unruh effect and the loss of quantum entanglement in strongly accelerated reference frames.

4.
Phys Rev B ; 100(2)2019 Jul.
Article in English | MEDLINE | ID: mdl-38845604

ABSTRACT

A metamaterial approach is capable of drastically increasing the critical temperature, T c , of composite metal-dielectric superconductors as demonstrated by the tripling of T c that was observed in bulk Al-Al2O3 coreshell metamaterials. A theoretical model based on the Maxwell-Garnett approximation provides a microscopic explanation of this effect in terms of electron-electron pairing mediated by a hybrid plasmon-phonon excitation. We report an observation of this excitation in Al-Al2O3 core-shell metamaterials using inelastic neutron scattering. This result provides support for this mechanism of superconductivity in metamaterials.

5.
Sci Rep ; 7(1): 8023, 2017 08 14.
Article in English | MEDLINE | ID: mdl-28808279

ABSTRACT

We consider the recently suggested model of a multiverse based on a ferrofluid. When the ferrofluid is subjected to a modest external magnetic field, the nanoparticles inside the ferrofluid form small hyperbolic metamaterial domains, which from the electromagnetic standpoint behave as individual "Minkowski universes" exhibiting different "laws of physics", such as different strength of effective gravity, different versions of modified Newtonian dynamics (MOND) and different radiation lifetimes. When the ferrofluid "multiverse" is populated with atomic or molecular species, and these species are excited using an external laser source, the radiation lifetimes of atoms and molecules in these "universes" depend strongly on the individual physical properties of each "universe" via the Purcell effect. Some "universes" are better fine-tuned than others to sustain the excited states of these species. Thus, the ferrofluid-based metamaterial "multiverse" may be used to study models of MOND and to illustrate the fine-tuning mechanism in cosmology.

6.
Sci Rep ; 6: 34140, 2016 Sep 23.
Article in English | MEDLINE | ID: mdl-27658850

ABSTRACT

One of the most important goals of condensed matter physics is materials by design, i.e. the ability to reliably predict and design materials with a set of desired properties. A striking example is the deterministic enhancement of the superconducting properties of materials. Recent experiments have demonstrated that the metamaterial approach is capable of achieving this goal, such as tripling the critical temperature TC in Al-Al2O3 epsilon near zero (ENZ) core-shell metamaterial superconductors. Here, we demonstrate that an Al/Al2O3 hyperbolic metamaterial geometry is capable of a similar TC enhancement, while having superior transport and magnetic properties compared to the core-shell metamaterial superconductors.

7.
Sci Rep ; 5: 15777, 2015 Nov 02.
Article in English | MEDLINE | ID: mdl-26522015

ABSTRACT

Recent experiments have shown the viability of the metamaterial approach to dielectric response engineering for enhancing the transition temperature, Tc, of a superconductor. In this report, we demonstrate the use of Al2O3-coated aluminium nanoparticles to form the recently proposed epsilon near zero (ENZ) core-shell metamaterial superconductor with a Tc that is three times that of pure aluminium. IR reflectivity measurements confirm the predicted metamaterial modification of the dielectric function thus demonstrating the efficacy of the ENZ metamaterial approach to Tc engineering. The developed technology enables efficient nanofabrication of bulk aluminium-based metamaterial superconductors. These results open up numerous new possibilities of considerable Tc increase in other simple superconductors.

8.
Philos Trans A Math Phys Eng Sci ; 373(2049)2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26217055

ABSTRACT

In the presence of an external magnetic field, cobalt nanoparticle-based ferrofluid forms a self-assembled hyperbolic metamaterial. The wave equation, which describes propagation of extraordinary light inside the ferrofluid, exhibits 2+1 dimensional Lorentz symmetry. The role of time in the corresponding effective three-dimensional Minkowski space-time is played by the spatial coordinate directed along the periodic nanoparticle chains aligned by the magnetic field. Here, we present a microscopic study of point, linear, planar and volume defects of the nanoparticle chain structure and demonstrate that they may exhibit strong similarities with such Minkowski space-time defects as magnetic monopoles, cosmic strings and the recently proposed space-time cloaks. Experimental observations of such defects are described.

9.
Sci Rep ; 4: 7321, 2014 Dec 04.
Article in English | MEDLINE | ID: mdl-25471303

ABSTRACT

A recent proposal that the metamaterial approach to dielectric response engineering may increase the critical temperature of a composite superconductor-dielectric metamaterial has been tested in experiments with compressed mixtures of tin and barium titanate nanoparticles of varying composition. An increase of the critical temperature of the order of ΔT ~ 0.15 K compared to bulk tin has been observed for 40% volume fraction of barium titanate nanoparticles. Similar results were also obtained with compressed mixtures of tin and strontium titanate nanoparticles.

10.
Sci Rep ; 4: 5706, 2014 Jul 16.
Article in English | MEDLINE | ID: mdl-25027947

ABSTRACT

We demonstrate a novel artificial optical material, the "photonic hyper-crystal", which combines the most interesting features of hyperbolic metamaterials and photonic crystals. Similar to hyperbolic metamaterials, photonic hyper-crystals exhibit broadband divergence in their photonic density of states due to the lack of usual diffraction limit on the photon wave vector. On the other hand, similar to photonic crystals, hyperbolic dispersion law of extraordinary photons is modulated by forbidden gaps near the boundaries of photonic Brillouin zones. Three dimensional self-assembly of photonic hyper-crystals has been achieved by application of external magnetic field to a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing.

11.
J Phys Condens Matter ; 26(30): 305701, 2014 Jul 30.
Article in English | MEDLINE | ID: mdl-25001512

ABSTRACT

Hyperbolic metamaterials are known to exhibit a transition in the topology of the photon iso-frequency surface from a closed ellipsoid to an open hyperboloid, resulting in a considerable increase of the photonic density of states. This topological transition may also be described as a change of metric signature of the effective optical space. Here we demonstrate that high Tc superconductors exhibit hyperbolic metamaterial behavior in the far infrared and THz frequency ranges. In the THz range the hyperbolic behavior occurs only in the normal state, while no propagating photon modes exist in the superconducting state. Thus, a quantum topological transition may be observed for THz photons at zero temperature as a function of the external magnetic field, in which the effective Minkowski spacetime arises in the mixed state of the superconductor at some critical value of the external magnetic field. Nucleation of effective Minkowski spacetime occurs via the formation of quantized Abrikosov vortices.

12.
Opt Express ; 21(12): 14918-25, 2013 Jun 17.
Article in English | MEDLINE | ID: mdl-23787680

ABSTRACT

Extraordinary light rays propagating inside a hyperbolic metamaterial look similar to particle world lines in a 2 + 1 dimensional Minkowski spacetime. Magnetic nanoparticles in a ferrofluid are known to form nanocolumns aligned along the magnetic field, so that a hyperbolic metamaterial may be formed at large enough nanoparticle concentration nH. Here we investigate optical properties of such a metamaterial just below nH. While on average such a metamaterial is elliptical, thermal fluctuations of nanoparticle concentration lead to transient formation of hyperbolic regions (3D Minkowski spacetimes) inside this metamaterial. Thus, thermal fluctuations in a ferrofluid look similar to creation and disappearance of individual Minkowski spacetimes (universes) in the cosmological multiverse. This theoretical picture is supported by experimental measurements of polarization-dependent optical transmission of a cobalt based ferrofluid at 1500 nm.


Subject(s)
Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/ultrastructure , Refractometry/methods , Materials Testing , Temperature
13.
Opt Lett ; 38(6): 971-3, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23503277

ABSTRACT

We analyze electromagnetic field propagation through a random medium that consists of hyperbolic metamaterial domains separated by regions of normal "elliptic" space. This situation may occur in a problem as common as 9 µm light propagation through a pile of sand, or as exotic as electromagnetic field behavior in the early universe immediately after the electroweak phase transition. We demonstrate that spatial field distributions in random hyperbolic and random "elliptic" media look strikingly different. Optical field is strongly enhanced at the boundaries of hyperbolic domains. This effect may potentially be used to evaluate the magnitude of magnetic fields which existed in the early universe.

14.
Opt Lett ; 37(14): 2976-8, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22825197

ABSTRACT

We analyze the propagation of electromagnetic modes guided by periodic plasmonic structures. We use full-wave solutions of Maxwell equations to calculate dispersion of these modes and derive analytical description of their optical properties. Finally, we demonstrate that, at a certain frequency range that can be controlled by the geometry, diffraction of these guided states is strongly suppressed, leading to formation of low-diffraction beams. A beaming phenomenon, consistent with earlier experiments, can be used as the foundation for on-chip communication or microscopy.

15.
Opt Lett ; 36(13): 2420-2, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21725431

ABSTRACT

Metamaterials are being used to model various exotic "optical spaces" for such applications as novel lenses and cloaking. While most efforts are directed toward the engineering of continuously changing dielectric permittivity and magnetic permeability tensors, an alternative approach may be based on lattices of metamaterial waveguides. Here we demonstrate the power of the latter technique by presenting metamaterial lattice models of various four-dimensional spaces.

16.
Phys Rev Lett ; 107(25): 253903, 2011 Dec 16.
Article in English | MEDLINE | ID: mdl-22243076

ABSTRACT

As demonstrated by Chernodub, vacuum in a strong magnetic field behaves as Abrikosov vortex lattice in a type-II superconductor. We investigate electromagnetic behavior of vacuum in this state and demonstrate that vacuum behaves as a hyperbolic metamaterial. If the magnetic field is constant, low frequency extraordinary photons experience this medium as a (3+1) Minkowski spacetime in which the role of time is played by the spatial z coordinate. Variations of the magnetic field curve this spacetime, and may lead to formation of "electromagnetic black holes." Since hyperbolic metamaterials behave as diffractionless "perfect lenses," and large enough magnetic fields probably existed in the early Universe, the demonstrated hyperbolic behavior of early vacuum may have imprints in the large scale structure of the present-day Universe.

17.
Opt Lett ; 35(20): 3396-8, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20967078

ABSTRACT

Despite strong experimental and theoretical evidence supporting superresolution imaging based on microlenses, the imaging mechanisms involved are not well understood. Based on the transformation optics approach, we demonstrate that a microlens may act as a two-dimensional fish-eye or an inverted Eaton lens. An asymmetric inverted Eaton lens may exhibit considerable image magnification, which has been confirmed experimentally.

18.
Phys Rev Lett ; 105(6): 067402, 2010 Aug 06.
Article in English | MEDLINE | ID: mdl-20868010

ABSTRACT

We demonstrate that the extraordinary waves in indefinite metamaterials experience an (--++) effective metric signature. During a metric signature change transition in such a metamaterial, a Minkowski space-time is created together with a large number of particles populating the space-time. Such metamaterial models provide a tabletop realization of metric signature change events suggested to occur in Bose-Einstein condensates and quantum gravity theories.

19.
Nano Lett ; 10(3): 813-20, 2010 Mar 10.
Article in English | MEDLINE | ID: mdl-20112921

ABSTRACT

We experimentally demonstrate the enhancement of fluorescence from quantum dots excited by interaction with surface plasmon polaritons on nanostructured metal surfaces. The relationship between observed enhancement and geometrical factors of the surface structure has been used to explore the behavior of quantum dots on different substrates. Imaging using standard fluorescence optical microscopy clearly demonstrates a strong dependence of fluorescence enhancement on fundamental parameters for periodic surface structures.


Subject(s)
Crystallization/methods , Metals/chemistry , Nanostructures/chemistry , Nanotechnology/methods , Quantum Dots , Spectrometry, Fluorescence/methods , Surface Plasmon Resonance/methods , Materials Testing , Nanostructures/ultrastructure , Particle Size , Surface Properties
20.
Materials (Basel) ; 3(10): 4793-4810, 2010 Oct 21.
Article in English | MEDLINE | ID: mdl-28883354

ABSTRACT

Recently we have suggested that two-dimensional broadband transformation optics devices based on metamaterial designs may be built using tapered waveguides. Here we review application of this principle to broadband electromagnetic cloaking, trapped rainbow, and novel microscopy devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...