Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Histochem Cytochem ; 48(6): 725-41, 2000 Jun.
Article in English | MEDLINE | ID: mdl-10820146

ABSTRACT

Type XI collagen is a component of the heterotypic collagen fibrils of fetal cartilage and is required to maintain the unusually thin diameter of these fibrils. The mature matrix form of the molecule retains an N-terminal variable region whose structure is modulated by alternative exon splicing that is tissue-specific and developmentally regulated. In the alpha1(XI) chain, antibodies to two of the peptides, p6b and p8, encoded by the alternatively spliced exons localized these epitopes to the surface of the collagen fibrils and were used to determine the pattern of isoform expression during the development of rat long bones (humerus). Expression of the p6b isoform was restricted to the periphery of the cartilage underlying the perichondrium of the diaphysis, a pattern that appears de novo at embryonic Day (E) 14. P8 isoforms appeared to be associated with early stages of chondrocyte differentiation and were detected throughout prechondrogenic mesenchyme and immature cartilage. After E16, p8 isoforms gradually disappeared from the diaphysis and then from the epiphysis preceding chondrocyte hypertrophy, but were highly evident at the periarticular joint surface, where ongoing chondrogenesis accompanies the formation of articular cartilage. The spatially restricted and differentiation-specific distribution of alpha1(XI) isoforms is evidence that Type XI collagen participates in skeletal development via a mechanism that may be distinct from regulation of fibrillogenesis.


Subject(s)
Alternative Splicing/genetics , Cartilage, Articular/embryology , Collagen/genetics , Humerus/embryology , Animals , Antibodies/immunology , Cartilage, Articular/ultrastructure , Collagen/immunology , Collagen/metabolism , Female , Gene Expression Regulation, Developmental , Humerus/ultrastructure , Protein Isoforms/genetics , Protein Isoforms/metabolism , Rabbits , Rats
2.
Dev Dyn ; 213(1): 12-26, 1998 Sep.
Article in English | MEDLINE | ID: mdl-9733097

ABSTRACT

Type XI collagen, a member of the group of fibrillar collagens, plays a regulatory role in the formation of the collagen fibril network in cartilage and consequently plays a pivotal role in the formation of the endochondral skeleton. The mechanism by which type XI collagen limits fibril growth appears to involve the large noncollagenous amino terminal domain. Complex alternative splicing occurs within this domain in two of the three constituent subunits, alpha1(XI) and alpha2(XI). In the alpha1(XI) chain, three alternatively spliced exons encoding one very basic and two very acidic peptides generate six spliceforms and protein isoforms. In order to better understand the significance of this alternative splicing, we have examined fetal rat cartilage to determine: (a) the relationship between alternative splicing and chondrogenesis in limb bud micromass culture; (b) the relative levels of expression of each of the splice-forms by ribonuclease protection; and (c) the distribution of splice-forms and protein isoforms by in situ hybridization and immunohistochemistry. The results indicate that the pattern of alternative splicing of the alpha1(XI) chain is tightly linked to chondrogenesis. The two most abundant spliceforms in fetal rib cartilage are v(o), lacking all three exons, and v1b, containing the exon encoding the basic peptide. While most of the spliceforms show a general distribution in nasal, Meckel's, and rib cartilage, v1b was restricted to the dorsal portion of the fetal rib. This distribution appears to correlate with the portion of the rib which will ultimately ossify, rather than with any of the differentiative states of chondrocytes. Together these results suggest that alternative splicing within the amino terminal domain of the alpha1(XI) chain may contribute to the function of type XI collagen and that expression of the basic v1b peptide may play a role in endochondral ossification.


Subject(s)
Alternative Splicing , Cartilage/metabolism , Collagen/genetics , Amino Acid Sequence , Animals , Cartilage/embryology , Chondrogenesis , Collagen/metabolism , Gene Expression , Molecular Sequence Data , Rats , Ribs/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...