Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38588382

ABSTRACT

Nitrogen vacancy (NV) center-based magnetometry has been proven to be a versatile sensor for various classes of magnetic materials in broad temperature and frequency ranges. Here, we use the longitudinal relaxation time T1 of single NV centers to investigate the spin dynamics of nanometer-thin flakes of α-RuCl3 at room temperature. We observe a significant reduction in the T1 in the presence of α-RuCl3 in the proximity of NVs, which we attribute to paramagnetic spin noise confined in the 2D hexagonal planes. Furthermore, the T1 time exhibits a monotonic increase with an applied magnetic field. We associate this trend with the alteration of the spin and charge noise in α-RuCl3 under an external magnetic field. These findings suggest that the influence of the spin dynamics of α-RuCl3 on the T1 of the NV center can be used to gain information about the material itself and the technique to be used on other 2D materials.

2.
ACS Appl Mater Interfaces ; 9(10): 8766-8773, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-28229585

ABSTRACT

The use of Cu-formate-2-amino-2-methyl-1-propanol ink and low-pressure plasma for the formation of highly conductive patterns on heat sensitive plastic substrates was studied. It was found that plasma results in decomposition of copper complex to form metallic copper without heating at high temperatures. Ink composition and plasma parameters (predrying conditions, plasma treatment duration, gas type, and flow rate) were optimized to obtain uniform conductive metallic films. The morphology and electrical characteristics of these films were evaluated. Exposing the printed copper metallo-organic decomposition (MOD) ink to 160 W plasma for 8 min yielded resistivity as low as 7.3 ± 0.2 µΩ cm, which corresponds to 23% bulk copper conductivity. These results demonstrate the applicability of MOD inks and plasma treatment to obtain highly conductive printed patterns on low-cost plastic substrates and 3D printed polymers.

SELECTION OF CITATIONS
SEARCH DETAIL
...