Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Biol Sci ; 289(1987): 20221113, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36416041

ABSTRACT

The biological sciences community is increasingly recognizing the value of open, reproducible and transparent research practices for science and society at large. Despite this recognition, many researchers fail to share their data and code publicly. This pattern may arise from knowledge barriers about how to archive data and code, concerns about its reuse, and misaligned career incentives. Here, we define, categorize and discuss barriers to data and code sharing that are relevant to many research fields. We explore how real and perceived barriers might be overcome or reframed in the light of the benefits relative to costs. By elucidating these barriers and the contexts in which they arise, we can take steps to mitigate them and align our actions with the goals of open science, both as individual scientists and as a scientific community.


Subject(s)
Biological Science Disciplines , Motivation , Information Dissemination
2.
Neuroimage ; 215: 116785, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32276066

ABSTRACT

Recent studies have shown that prediction and attention can interact under various circumstances, suggesting that the two processes are based on interdependent neural mechanisms. In the visual modality, attention can be deployed to the location of a task-relevant stimulus ('spatial attention') or to a specific feature of the stimulus, such as colour or shape, irrespective of its location ('feature-based attention'). Here we asked whether predictive processes are influenced by feature-based attention outside the current spatial focus of attention. Across two experiments, we recorded neural activity with electroencephalography (EEG) as human observers performed a feature-based attention task at fixation and ignored a stream of peripheral stimuli with predictable or surprising features. Central targets were defined by a single feature (colour or orientation) and differed in salience across the two experiments. Task-irrelevant peripheral patterns usually comprised one particular conjunction of features (standards), but occasionally deviated in one or both features (deviants). Consistent with previous studies, we found reliable effects of feature-based attention and prediction on neural responses to task-irrelevant patterns in both experiments. Crucially, we observed an interaction between prediction and feature-based attention in both experiments: the neural effect of feature-based attention was larger for surprising patterns than it was for predicted patterns. These findings suggest that global effects of feature-based attention depend on surprise, and are consistent with a recent theory that suggests attention optimises the precision of predictions by modulating the gain of prediction errors.


Subject(s)
Attention/physiology , Visual Perception/physiology , Adult , Electroencephalography , Evoked Potentials , Female , Fixation, Ocular , Humans , Male , Photic Stimulation , Young Adult
3.
PLoS Biol ; 17(7): e3000368, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31291244

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pbio.2006812.].

4.
PLoS Biol ; 17(2): e2006812, 2019 02.
Article in English | MEDLINE | ID: mdl-30811381

ABSTRACT

The encoding of sensory information in the human brain is thought to be optimised by two principal processes: 'prediction' uses stored information to guide the interpretation of forthcoming sensory events, and 'attention' prioritizes these events according to their behavioural relevance. Despite the ubiquitous contributions of attention and prediction to various aspects of perception and cognition, it remains unknown how they interact to modulate information processing in the brain. A recent extension of predictive coding theory suggests that attention optimises the expected precision of predictions by modulating the synaptic gain of prediction error units. Because prediction errors code for the difference between predictions and sensory signals, this model would suggest that attention increases the selectivity for mismatch information in the neural response to a surprising stimulus. Alternative predictive coding models propose that attention increases the activity of prediction (or 'representation') neurons and would therefore suggest that attention and prediction synergistically modulate selectivity for 'feature information' in the brain. Here, we applied forward encoding models to neural activity recorded via electroencephalography (EEG) as human observers performed a simple visual task to test for the effect of attention on both mismatch and feature information in the neural response to surprising stimuli. Participants attended or ignored a periodic stream of gratings, the orientations of which could be either predictable, surprising, or unpredictable. We found that surprising stimuli evoked neural responses that were encoded according to the difference between predicted and observed stimulus features, and that attention facilitated the encoding of this type of information in the brain. These findings advance our understanding of how attention and prediction modulate information processing in the brain, as well as support the theory that attention optimises precision expectations during hierarchical inference by increasing the gain of prediction errors.


Subject(s)
Attention/physiology , Adolescent , Adult , Brain/physiology , Electroencephalography , Evoked Potentials/physiology , Female , Humans , Male , Middle Aged , Photic Stimulation , Time Factors , Young Adult
5.
Elife ; 72018 12 14.
Article in English | MEDLINE | ID: mdl-30547881

ABSTRACT

Predictive coding theories argue that recent experience establishes expectations in the brain that generate prediction errors when violated. Prediction errors provide a possible explanation for repetition suppression, where evoked neural activity is attenuated across repeated presentations of the same stimulus. The predictive coding account argues repetition suppression arises because repeated stimuli are expected, whereas non-repeated stimuli are unexpected and thus elicit larger neural responses. Here, we employed electroencephalography in humans to test the predictive coding account of repetition suppression by presenting sequences of visual gratings with orientations that were expected either to repeat or change in separate blocks of trials. We applied multivariate forward modelling to determine how orientation selectivity was affected by repetition and prediction. Unexpected stimuli were associated with significantly enhanced orientation selectivity, whereas selectivity was unaffected for repeated stimuli. Our results suggest that repetition suppression and expectation have separable effects on neural representations of visual feature information.


Subject(s)
Anticipation, Psychological , Pattern Recognition, Visual/physiology , Visual Cortex/physiology , Adolescent , Adult , Brain Mapping , Electroencephalography , Female , Humans , Male , Photic Stimulation , Reaction Time/physiology , Visual Cortex/anatomy & histology , Visual Cortex/diagnostic imaging
6.
J Cogn Neurosci ; 30(8): 1119-1129, 2018 08.
Article in English | MEDLINE | ID: mdl-29791299

ABSTRACT

Recent evidence suggests that voluntary spatial attention can affect neural processing of visual stimuli that do not enter conscious awareness (i.e., invisible stimuli), supporting the notion that attention and awareness are dissociable processes [Wyart, V., Dehaene, S., & Tallon-Baudry, C. Early dissociation between neural signatures of endogenous spatial attention and perceptual awareness during visual masking. Frontiers in Human Neuroscience, 6, 1-14, 2012; Watanabe, M., Cheng, K., Murayama, Y., Ueno, K., Asamizuya, T., Tanaka, K., et al. Attention but not awareness modulates the BOLD signal in the human V1 during binocular suppression. Science, 334, 829-831, 2011]. To date, however, no study has demonstrated that these effects reflect enhancement of the neural representation of invisible stimuli per se, as opposed to other neural processes not specifically tied to the stimulus in question. In addition, it remains unclear whether spatial attention can modulate neural representations of invisible stimuli in direct competition with highly salient and visible stimuli. Here we developed a novel EEG frequency-tagging paradigm to obtain a continuous readout of human brain activity associated with visible and invisible signals embedded in dynamic noise. Participants ( n = 23) detected occasional contrast changes in one of two flickering image streams on either side of fixation. Each image stream contained a visible or invisible signal embedded in every second noise image, the visibility of which was titrated and checked using a two-interval forced-choice detection task. Steady-state visual-evoked potentials were computed from EEG data at the signal and noise frequencies of interest. Cluster-based permutation analyses revealed significant neural responses to both visible and invisible signals across posterior scalp electrodes. Control analyses revealed that these responses did not reflect a subharmonic response to noise stimuli. In line with previous findings, spatial attention increased the neural representation of visible signals. Crucially, spatial attention also increased the neural representation of invisible signals. As such, the present results replicate and extend previous studies by demonstrating that attention can modulate the neural representation of invisible signals that are in direct competition with highly salient masking stimuli.


Subject(s)
Attention/physiology , Awareness/physiology , Brain/physiology , Spatial Processing/physiology , Visual Perception/physiology , Electroencephalography , Evoked Potentials, Visual , Female , Humans , Male , Photic Stimulation , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...