Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Memb Sci ; 379(1-2): 131-137, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-22228920

ABSTRACT

Membranes containing reactive nanoparticles (Fe and Fe/Pd) immobilized in a polymer film (polyacrylic acid, PAA-coated polyvinylidene fluoride, PVDF membrane) are prepared by a new method. In the present work a biodegradable, non-toxic -"green" reducing agent, green tea extract was used for nanoparticle (NP) synthesis, instead of the well-known sodium borohydride. Green tea extract contains a number of polyphenols that can act as both chelating/reducing and capping agents for the nanoparticles. Therefore, the particles are protected from oxidation and aggregation, which increases their stability and longevity. The membrane supported NPs were successfully used for the degradation of a common and highly important pollutant, trichloroethylene (TCE). The rate of TCE degradation was found to increase linearly with the amount of Fe immobilized on the membrane, the surface normalized rate constant (k(SA)) being 0.005 L/m(2)h. The addition of a second catalytic metal, Pd, to form bimetallic Fe/Pd increased the k(SA) value to 0.008 L/m(2)h. For comparison purposes, Fe and Fe/Pd nanoparticles were synthesized in membranes using sodium borohydride as a reducing agent. Although the initial k(SA) values for this case (for Fe) are one order of magnitude higher than the tea extract synthesized NPs, the rapid oxidation reduced their reactivity to less than 20 % within 4 cycles. For the green tea extract NPs, the initial reactivity in the membrane domain was preserved even after 3 months of repeated use. The reactivity of TCE was verified with "real" water system.

2.
J Memb Sci ; 346(2): 310-317, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-20161475

ABSTRACT

This paper deals with bimetallic (Fe/Pd) nanoparticle synthesis inside the membrane pores and application for catalytic dechlorination of toxic organic compounds form aqueous streams. Membranes have been used as platforms for nanoparticle synthesis in order to reduce the agglomeration, encountered in solution phase synthesis which leads to a dramatic loss of reactivity. The membrane support, polyvinylidene fluoride (PVDF) was modified by in situ polymerization of acrylic acid in aqueous phase. Subsequent steps included ion exchange with Fe(2+), reduction to Fe(0) with sodium borohydride and Pd deposition. Various techniques, such as STEM, EDX, FTIR and permeability measurements, were used for membrane characterization and showed that bimetallic (Fe/Pd) nanoparticles with an average size of 20-30 nm have been incorporated inside of the PAA-coated membrane pores. The Fe/Pd-modified membranes showed a high reactivity toward a model compound, 2, 2'-dichlorobyphenyl and a strong dependence of degradation on Pd (hydrogenation catalyst) content. The use of convective flow substantially reduces the degradation time: 43% conversion of dichlorobiphenyl to biphenyl can be achieved in less than 40 s residence time. Another important aspect is the ability to regenerate and reuse the Fe/Pd bimetallic systems by washing with a solution of sodium borohydride, because the iron becomes inactivated (corroded) as the dechlorination reaction proceeds.

3.
J Memb Sci ; 352(1-2): 41-49, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-22879688

ABSTRACT

Traditionally, the pervaporation of water-solvent mixtures where the solvent is the major component is performed using hydrophilic membranes (such as PVA or zeolites). In the present paper a new type of pervaporation membrane (amorphous perfluorinated polymer, hydrophobic) was studied for separation of water-solvent mixtures. This membrane has high free volume and is inert for all solvents, and has a remarkable mechanical, chemical and thermal stability. The water is transported by solution diffusion model and the separation of solvent is primarily based on molecular sieving (size exclusion) principles. The membrane shows a high stability for operation over a broad range of feed concentrations without swelling; the operating temperature does not have a significant effect on membrane separation performance. Separation factors as high as 349 and 500 for water-ethanol and water-IPA mixtures (2-98 % wt water-solvent) and fluxes of 0.15 and 0.05 kg/m(2)h, respectively were obtained at 22 °C. The permeance-based selectivities were also calculated, and the selectivity is approximately constant for a wide range of feed concentrations. The pervaporation of more complex (ternary) mixtures of water-ethanol-ethyl acetate showed that this system could be successfully applied for solute separation based on size exclusion.

4.
Langmuir ; 22(24): 10118-24, 2006 Nov 21.
Article in English | MEDLINE | ID: mdl-17107008

ABSTRACT

Multilayer assemblies of polyelectrolytes, for protein immobilization, have been created within the membrane pore domain. This approach was taken for two reasons: (1) the high internal membrane area can potentially increase the amount of immobilized protein, and (2) the use of convective flow allows uniform assembly of layers and eliminates diffusional limitations after immobilization. To build a stable assembly, the first polyelectrolyte layer was covalently attached to the membrane surface and inside the pore walls. Either poly(L-glutamic acid) (PLGA) or poly(L-lysine) (PLL) was used in this step. Subsequent deposition occurs by multiple electrostatic interactions between the adsorbing polyelectrolyte [poly(allylamine) hydrochloride (PAH) or poly(styrenesulfonate) (PSS)] and the oppositely charged layer. Three-layer membranes were created: PLL-PSS-PAH or PLGA-PAH-PSS, for an overall positive or negative charge, respectively. The overall charge on both the protein and membrane plays a substantial role in immobilization. When the protein and the membrane are oppositely charged, the amount immobilized and the stability within the polyelectrolyte assembly are significantly higher than for the case when both have similar charges. After protein incorporation in the multilayer assembly, the active site accessibility was comparable to that obtained in the homogeneous phase. This was tested by affinity interaction (avidin-biotin) and by carrying out two reactions (catalyzed by glucose oxidase and alkaline phosphatase). Besides simplicity and versatility, the ease of enzyme regeneration constitutes an additional benefit of this approach.


Subject(s)
Biocompatible Materials/chemistry , Enzymes/chemistry , Filtration , Adsorption , Alkaline Phosphatase/chemistry , Avidin/chemistry , Biotin/chemistry , Catalysis , Glucose Oxidase/chemistry , Membranes/chemistry , Microscopy, Electron, Scanning , Models, Chemical , Polyglutamic Acid/chemistry , Polylysine/chemistry , Polymers/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...