Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pest Manag Sci ; 73(12): 2550-2558, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28834172

ABSTRACT

BACKGROUND: Macrocyclic lactones are arguably the most successful chemical class with efficacy against parasitic nematodes. Here we investigated the effect of the macrocyclic lactone ivermectin on lipid homeostasis in the plant parasitic nematode Globodera pallida and provide new insight into its mode of action. RESULTS: A non-invasive, non-destructive, label-free and chemically selective technique called Coherent anti-Stokes Raman scattering (CARS) spectroscopy was used to study lipid stores in G. pallida. We optimised the protocol using the free-living nematode Caenorhabditis elegans and then used CARS to quantify lipid stores in the pre-parasitic, non-feeding J2 stage of G. pallida. This revealed a concentration of lipid stores in the posterior region of J2 s within 24 h of hatching which decreased to undetectable levels over the course of 28 days. We tested the effect of ivermectin on J2 viability and lipid stores. Within 24 h, ivermectin paralysed J2 s. Counterintuitively, over the same time-course ivermectin increased the rate of depletion of J2 lipid, suggesting that in ivermectin-treated J2 s there is a disconnection between the energy requirements for motility and metabolic rate. This decrease in lipid stores would be predicted to negatively impact on J2 infective potential. CONCLUSION: These data suggest that the benefit of macrocyclic lactones as seed treatments may be underpinned by a multilevel effect involving both neuromuscular inhibition and acceleration of lipid metabolism. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Caenorhabditis elegans/chemistry , Insecticides/pharmacology , Ivermectin/pharmacology , Lipid Metabolism/drug effects , Spectrum Analysis, Raman/methods , Tylenchoidea/drug effects , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Lipids/chemistry , Tylenchoidea/chemistry , Tylenchoidea/metabolism
2.
Chem Sci ; 6(12): 7089-7096, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-29861946

ABSTRACT

Coherent anti-Stokes Raman scattering (CARS) is a chemically selective label-free imaging technique which is rapidly emerging as a powerful alternative to conventional microscopy in biomedicine. The strength of this imaging approach is the provision of rapid insight into chemical distribution especially of small biomolecules such as lipids. The label-free, non-destructive and non-invasive nature of CARS lends itself for use with stem cells, as labelling or staining will render them otherwise unsuitable for therapy. Isolation, enrichment and characterisation of skeletal stem cells (SSCs) and their progeny is of tremendous significance in regenerative medicine. However, SSCs differentiation into bone, cartilage or fat cell types, is currently assessed using several invasive and, typically, destructive methodologies. Thus, CARS presents an exciting alternative to interrogate the differentiation of SSCs in their natural state. In the current study, we have examined the adipogenic differentiation of SSCs over time using CARS imaging and verified the observed differentiation using molecular analysis of gene expression as well as compared the results to conventional Oil Red O lipid staining. We find that the CARS analysis provides an enhanced resolution and definition of lipid droplets, detectable as early as 24 hours and 72 hours after adipogenic induction. Quantification of the CARS image data sets also showed a change in lipid droplet size distribution during the course of adipogenesis over 14 days. Furthermore, CARS provided a superior and facile approach to monitor changes in SSCs as a result of chemical modulation of adipogenic differentiation. The current studies pave the way for the use of CARS as a powerful chemical imaging tool in therapeutics, regenerative medicine and skeletal stem cell biology.

SELECTION OF CITATIONS
SEARCH DETAIL
...