Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 144(2): 296-309, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-21241896

ABSTRACT

Though many individual transcription factors are known to regulate hematopoietic differentiation, major aspects of the global architecture of hematopoiesis remain unknown. Here, we profiled gene expression in 38 distinct purified populations of human hematopoietic cells and used probabilistic models of gene expression and analysis of cis-elements in gene promoters to decipher the general organization of their regulatory circuitry. We identified modules of highly coexpressed genes, some of which are restricted to a single lineage but most of which are expressed at variable levels across multiple lineages. We found densely interconnected cis-regulatory circuits and a large number of transcription factors that are differentially expressed across hematopoietic states. These findings suggest a more complex regulatory system for hematopoiesis than previously assumed.


Subject(s)
Gene Expression Regulation , Gene Regulatory Networks , Hematopoiesis , Transcription Factors/metabolism , Gene Expression Profiling , Humans
2.
J Immunol ; 181(3): 1859-68, 2008 Aug 01.
Article in English | MEDLINE | ID: mdl-18641323

ABSTRACT

After Ag encounter, naive lymphocytes differentiate into populations of memory cells that share a common set of functions including faster response to Ag re-exposure and the ability to self-renew. However, memory lymphocytes in different lymphocyte lineages are functionally and phenotypically diverse. It is not known whether discrete populations of T and B cells use similar transcriptional programs during differentiation into the memory state. We used cross-species genomic analysis to examine the pattern of genes up-regulated during the differentiation of naive lymphocytes into memory cells in multiple populations of human CD4, CD8, and B cell lymphocytes as well as two mouse models of memory development. We identified and validated a signature of genes that was up-regulated in memory cells compared with naive cells in both human and mouse CD8 memory differentiation, suggesting marked evolutionary conservation of this transcriptional program. Surprisingly, this conserved CD8 differentiation signature was also up-regulated during memory differentiation in CD4 and B cell lineages. To validate the biologic significance of this signature, we showed that alterations in this signature of genes could distinguish between functional and exhausted CD8 T cells from a mouse model of chronic viral infection. Finally, we generated genome-wide microarray data from tetramer-sorted human T cells and showed profound differences in this differentiation signature between T cells specific for HIV and those specific for influenza. Thus, our data suggest that in addition to lineage-specific differentiation programs, T and B lymphocytes use a common transcriptional program during memory development that is disrupted in chronic viral infection.


Subject(s)
B-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Evolution, Molecular , Immunologic Memory/immunology , Transcription, Genetic/genetics , Transcription, Genetic/immunology , Adult , Aged , Animals , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/metabolism , Cells, Cultured , Gene Expression Profiling , Gene Expression Regulation , Humans , Mice , Middle Aged , Phenotype
3.
Genetics ; 160(4): 1599-608, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11973313

ABSTRACT

Therapeutic intervention for atherosclerosis has predominantly concentrated on regulating cholesterol levels; however, these therapeutics are not efficacious for all patients, suggesting that other factors are involved. This study was initiated to identify mechanisms that regulate atherosclerosis predisposition in mice other than cholesterol level regulation. To do so we performed quantitative trait locus analysis using two inbred strains that each carry the atherosclerosis phenotype-sensitizing Apoe deficiency and that have been shown to have widely disparate predilection to atherosclerotic lesion formation. One highly significant locus on chromosome 10 (LOD = 7.8) accounted for 19% of the variance in lesion area independent of cholesterol. Two additional suggestive loci were identified on chromosomes 14 (LOD = 3.2) and 19 (LOD = 3.2), each accounting for 7-8% of the lesion variance. In all, five statistically significant and suggestive loci affecting lesion size but not lipoprotein levels were identified. Many of these were recapitulated in an independent confirmatory cross. In summary, two independently performed crosses between C57BL/6 and FVB/N Apoe-deficient mice have revealed several previously unreported atherosclerosis susceptibility loci that are distinct from loci linked to lipoprotein levels.


Subject(s)
Apolipoproteins E/deficiency , Arteriosclerosis/genetics , Genetic Predisposition to Disease , Animals , Apolipoproteins E/genetics , Cholesterol/blood , Female , Gene Frequency , Lipids/blood , Male , Mice , Mice, Inbred C57BL , Phenotype , Quantitative Trait, Heritable
SELECTION OF CITATIONS
SEARCH DETAIL
...