Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Physiol ; 106(8): 1731-1742, 2021 08.
Article in English | MEDLINE | ID: mdl-34086376

ABSTRACT

NEW FINDINGS: What is the central question of this study? How does intrinsic aerobic capacity impact weight loss with 50% daily caloric restriction and alternate-day fasting? What is the main finding and its importance? Intermittent fasting is effective for weight loss in rats with low fitness, which highlights the importance of how intermittent fasting interacts with aerobic fitness. ABSTRACT: Recent interest has focused on the benefits of time-restricted feeding strategies, including intermittent fasting, for weight loss. It is not yet known whether intermittent fasting is more effective than daily caloric restriction at stimulating weight loss and how each is subject to individual differences. Here, rat models of leanness and obesity, artificially selected for intrinsically high (HCR) and low (LCR) aerobic capacity, were subjected to intermittent fasting and 50% calorie restrictive diets in two separate experiments using male rats. The lean, high-fitness HCR and obesity-prone, low-fitness LCR rats underwent 50% caloric restriction while body weight and composition were monitored. The low-fitness LCR rats were better able to retain lean mass than the high-fitness HCR rats, without significantly different proportional loss of weight or fat. In a separate experiment using intermittent fasting in male HCR and LCR rats, alternate-day fasting induced significantly greater loss of weight and fat mass in LCR compared with HCR rats, although the HCR rats had a more marked reduction in ad libitum daily food intake. Altogether, this suggests that intermittent fasting is an effective weight-loss strategy for those with low intrinsic aerobic fitness; however, direct comparison of caloric restriction and intermittent fasting is warranted to determine any differential effects on energy expenditure in lean and obesity-prone phenotypes.


Subject(s)
Caloric Restriction , Fasting , Animals , Male , Obesity , Phenotype , Rats , Weight Loss
2.
Physiol Behav ; 230: 113280, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33285179

ABSTRACT

BACKGROUND: Intermittent fasting (IF) strategies have emerged as viable alternatives to traditional calorie-restricted diets. A key predictor of metabolic health and response to diet is cardiometabolic fitness, including intrinsic aerobic capacity. In a contrasting rat model of aerobic capacity-high- and low-capacity runners (HCR, LCR)-we found that the lean and physically active HCR were also more responsive to a standard calorie-restricted diet. Here, we assessed the ability of IF to induce weight loss on a background of high and low aerobic fitness accompanied by different levels of daily physical activity. METHODS: Female HCR and LCR (8 per line) were subjected to IF (alternate-day fasting) for 14 weeks. Outcomes included changes in body weight, fat and lean mass, daily physical activity, and food and water intake. After initial measurements, IF was continued, and measurements were repeated after one year of IF. RESULTS: All rats lost weight with IF, and LCR lost significantly more weight than HCR. This difference was primarily due to differential fat loss; loss of lean mass, on the other hand, was similar between HCR and LCR. Total food intake decreased with IF, and LCR showed lower intake than HCR only during the first 5 weeks of IF. Physical activity was suppressed by long-term IF. Physical activity increased on fed days compared to fasted days, and this pattern was more pronounced in HCR. The differential effects of IF in HCR and LCR persisted after one year of IF, with IF preventing the marked weight gain seen in ad libitum fed LCR during this time. CONCLUSION: Weight and fat loss from IF was more pronounced in obesity-prone, low-aerobic capacity LCR, despite the low activity levels seen in these rats. The possibility that aerobic capacity modulates response to IF in human participants remains unexplored.


Subject(s)
Fasting , Obesity , Animals , Exercise , Exercise Tolerance , Female , Rats , Weight Gain
3.
Sci Rep ; 9(1): 6459, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-31015504

ABSTRACT

A correction has been published and is appended to both the HTML and PDF versions of this paper. The error has not been fixed in the paper.

4.
Sci Rep ; 6: 37435, 2016 11 25.
Article in English | MEDLINE | ID: mdl-27886210

ABSTRACT

Melanocortin 4 receptor (MC4R) variants contribute to human obesity, and rats lacking functional MC4R (Mc4rK314X/K314X) are obese. We investigated the hypothesis that low energy expenditure (EE) and physical activity contribute to this obese phenotype in male rats, and determined whether lack of functional MC4R conferred protection from weight loss during 50% calorie restriction. Though Mc4rK314X/K314X rats showed low brown adipose Ucp1 expression and were less physically active than rats heterozygous for the mutation (Mc4r+/K314X) or wild-type (Mc4r+/+) rats, we found no evidence of lowered EE in Mc4rK314X/K314X rats once body weight was taken into account using covariance. Mc4rK314X/K314X rats had a significantly higher respiratory exchange ratio. Compared to Mc4r+/+ rats, Mc4rK314X/K314X and Mc4r+/K314X rats lost less lean mass during calorie restriction, and less body mass when baseline weight was accounted for. Limited regional overexpression of Mc3r was found in the hypothalamus. Although lower physical activity levels in rats with nonfunctional MC4R did not result in lower total EE during free-fed conditions, rats lacking one or two functional copies of Mc4r showed conservation of mass, particularly lean mass, during energy restriction. This suggests that variants affecting MC4R function may contribute to individual differences in the metabolic response to food restriction.


Subject(s)
Adipose Tissue, Brown/metabolism , Body Weight/genetics , Energy Metabolism/genetics , Hypothalamus/metabolism , Receptor, Melanocortin, Type 4/deficiency , Animals , Caloric Restriction/methods , Gene Expression , Heterozygote , Homozygote , Male , Phenotype , Physical Conditioning, Animal , Rats , Rats, Transgenic , Receptor, Melanocortin, Type 4/genetics , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
5.
Physiol Behav ; 139: 303-13, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25449411

ABSTRACT

Daily physical activity shows substantial inter-individual variation, and low physical activity is associated with obesity and weight gain. Elevated physical activity is also associated with high intrinsic aerobic capacity, which confers considerable metabolic health benefits. Rats artificially selected for high intrinsic aerobic capacity (high-capacity runners, HCR) are more physically active than their low-capacity counterparts (low-capacity runners, LCR). To test the hypothesis that physical activity counters metabolic thriftiness, we measured physical activity and weight loss during three weeks of 50% calorie restriction (CR) in the HCR and LCR rat lines. At baseline, HCR ate more and were more active than LCR; this was seen in male rats, where LCR are considerably heavier than HCR, as well as in a set of female rats where body weight did not differ between the lines, demonstrating that this effect is consistent across sex and not secondary to body weight. We show for the first time that HCR lose more weight than LCR relative to baseline. Physical activity levels declined throughout CR, and this was more pronounced in HCR than in LCR, yet some aspects of activity remained elevated in HCR relative to LCR even during CR. This is consistent with the idea that low physical activity contributes to metabolic thriftiness during food restriction, allowing LCR to defend body mass, particularly lean mass. This has implications for physical activity during diet-induced weight loss, the genetic underpinnings of individual differences in weight loss during a diet, and the potential evolutionary opposition between metabolic thriftiness and aerobic capacity.


Subject(s)
Caloric Restriction , Motor Activity/physiology , Running/physiology , Weight Loss/physiology , Adipose Tissue/physiology , Animals , Body Composition/physiology , Eating/physiology , Female , Male , Physical Fitness/physiology , Rats , Sex Characteristics , Species Specificity , Stereotyped Behavior/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...