Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(12): e0225647, 2019.
Article in English | MEDLINE | ID: mdl-31790463

ABSTRACT

The aim of this study was to compare the effect of pelvic floor muscle training with surface electromyographic (sEMG) biofeedback (BF group) and Pilates exercises (P group) on the bioelectrical activity of pelvic floor muscles in women with stress urinary incontinence. The other aim aim was to compare changes in voiding diaries and scores on quality of life questionnaire against baseline values and between the groups. Women in the BF group (n = 18) participated in pelvic floor muscle training with sEMG biofeedback; the P group (n = 13) participated in basic level Pilates workouts. Both protocols were continued for eight weeks. Voiding diary, quality of life and electromyographic characteristics of the pelvic floor muscles were assessed at the three-time points: at baseline, after eight weeks' training, and at month six post-training. The sEMG activity of the pelvic floor muscles was tested during five trials in two positions. There was no marked improvement in bioelectrical activity of the pelvic floor muscles during contraction following training with sEMG biofeedback or Pilates exercises. Following eight weeks of sEMG biofeedback training, a decrease was noted in resting bioelectrical activity of pelvic floor muscles and during relaxation after sustained contraction but only in supine-lying. No such effect was observed in the Pilates group. In the BF group, the number of incontinence episodes after end of treatment (timpepoints: 1vs. 2) and at six month follow-up (timpepoints: 1vs. 3) decreased by 68.5% and 89.3%, respectively. The respective values in the P group were 78.6%, and 86.4%. The intergroup differences did not reach the level of statistical significance. As regards the quality of life, the questionnaire demonstrated that Pilates exercises had significantly better effects compared to biofeedback training both at the end of the eight-week exercise program and (p = 0.003) and at six month follow-up (p = 0.0009). The International Consultation on Incontinence Questionnaire-Short Form (ICIQ- SF) showed comparable efficacy of Pilates exercises and training with sEMG biofeedback. Intragroup improvements in micturition frequency, incontinence (leakage) episodes, and nocturia frequency were comparable. Alleviation of urinary incontinence symptoms was comparable in both groups, whereas the improvement in the quality of life was more notable in the Pilates group. The obtained results failed to demonstrate the superiority of any of the two methods regarding the bioelectrical activity of pelvic floor muscles in patients with stress urinary incontinence.


Subject(s)
Biofeedback, Psychology/methods , Electromyography , Exercise Movement Techniques , Pelvic Floor/physiopathology , Urinary Incontinence, Stress/physiopathology , Electric Impedance , Female , Humans , Middle Aged , Quality of Life , Treatment Outcome , Urinary Incontinence, Stress/rehabilitation
2.
Acta Bioeng Biomech ; 18(3): 105-113, 2016.
Article in English | MEDLINE | ID: mdl-27840432

ABSTRACT

PURPOSE: The aim of the study was to evaluate the effects of a 6-week sEMG-biofeedback-assisted pelvic floor muscle training program on pelvic floor muscle activity in young continent women. METHODS: Pelvic floor muscle activity was recorded using a vaginal probe during five experimental trials. Biofeedback training was continued for 6 weeks, 3 times a week. Muscle strenghtening and endurance exercises were performed alternately. SEMG (surface electromyography) measurements were recorded on four different occasions: before training started, after the third week of training, after the sixth week of training, and one month after training ended. RESULTS: A 6-week sEMG-biofeedback-assisted pelvic floor muscle training program significantly decreased the resting activity of the pelvic floor muscles in supine lying and standing. The ability to relax the pelvic floor muscles after a sustained 60-second contraction improved significantly after the 6-week training in both positions. SEMG-biofeedback training program did not seem to affect the activity of the pelvic floor muscles or muscle fatigue during voluntary pelvic floor muscle contractions. CONCLUSIONS: SEMG-biofeedback-assisted pelvic floor muscle training might be recommended for physiotherapists to improve the effectiveness of their relaxation techniques.


Subject(s)
Biofeedback, Psychology , Electrophysiological Phenomena , Muscle, Skeletal/physiology , Parity , Pelvic Floor/physiology , Adult , Electromyography , Female , Humans , Muscle Contraction/physiology , Muscle Relaxation , Pregnancy , Rest , Supine Position , Young Adult
3.
BMC Urol ; 15: 107, 2015 Oct 24.
Article in English | MEDLINE | ID: mdl-26498430

ABSTRACT

BACKGROUND: More and more frequently stress urinary incontinence affects young healthy women. Hence, early implementation of effective preventive strategies in nulliparous continent women is essential, including pelvic floor muscle training. An initial evaluation based on the bioelectrical activity of the pelvic floor muscles (PFM) during whole-body vibration (WBV) would help to devise the best individualized training for prevention of stress urinary incontinence in woman. We hypothesized that synchronous WBV enhances bioelectrical activity of the PFM which depends on vibration frequency and peak-to-peak vibration displacement. METHODS: The sample consisted of 36 nulliparous continent women randomly allocated to three comparative groups. Group I and II subjects participated in synchronous whole-body vibrations on a vibration platform; the frequency and peak-to-peak displacement of vibration were set individually for each group. Control participants performed exercises similar to those used in the study groups but without the concurrent application of vibrations. Pelvic floor surface electromyography (sEMG) activity was recorded using a vaginal probe during three experimental trials limited to 30s, 60s and 90 s. The mean amplitude and variability of the signal were normalized to the Maximal Voluntary Contraction - MVC. RESULTS: Friedman's two-way ANOVA revealed a statistically significant difference in the mean normalized amplitudes (%MVC) of the sEMG signal from the PFM during 60s- and 90 s-trials between the group exposed to high-intensity WBV and control participants (p < 0.05). Longer trial duration was associated with a statistically significant decrease in the variability of sEMG signal amplitude in the study and control groups (p < 0.05). CONCLUSIONS: Synchronous high-intensity WBV (40 Hz, 4 mm) of long duration (60s, 90 s) significantly enhances the activation of the PFM in young continent women. Prolonged maintenance of a static position significantly decreases the variability of sEMG signal amplitude independent of whole-body vibrations. Single whole-body vibrations in nulliparous continent women does not cause pelvic floor muscle fatigue. TRIAL REGISTRATION: The trial was registered in the Australian and New Zealand Clinical Trials Registry (no. ACTRN12615000966594); registration date: 15/09/2015.


Subject(s)
Electromyography/methods , Muscle Contraction/physiology , Muscle Fatigue/physiology , Muscle, Skeletal/physiology , Pelvic Floor/physiology , Vibration , Adult , Female , Humans , Physical Stimulation/methods , Reflex, Stretch/physiology , Reproducibility of Results , Sensitivity and Specificity
4.
Med Sci Monit ; 21: 2232-9, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26232122

ABSTRACT

BACKGROUND: Kinesiology taping (KT) is a popular method of supporting professional athletes during sports activities, traumatic injury prevention, and physiotherapeutic procedures after a wide range of musculoskeletal injuries. The effectiveness of KT in muscle strength and motor units recruitment is still uncertain. The objective of this study was to assess the effect of KT on surface electromyographic (sEMG) activity and muscle flexibility of the rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) muscles in healthy volleyball players. MATERIAL AND METHODS: Twenty-two healthy volleyball players (8 men and 14 women) were included in the study and randomly assigned to 2 comparative groups: "kinesiology taping" (KT; n=12; age: 22.30 ± 1.88 years; BMI: 22.19 ± 4.00 kg/m(2)) in which KT application over the RF muscle was used, and "placebo taping" (PT; n=10; age: 21.50 ± 2.07 years; BMI: 22.74 ± 2.67 kg/m(2)) in which adhesive nonelastic tape over the same muscle was used. All subjects were analyzed for resting sEMG activity of the VL and VM muscles, resting and functional sEMG activity of RF muscle, and muscle flexibility of RF muscle. RESULTS: No significant differences in muscle flexibility of the RF muscle and sEMG activity of the RF, VL, and VM muscles were registered before and after interventions in both groups, and between the KT and PT groups (p>0.05). CONCLUSIONS: The results show that application of the KT to the RF muscle is not useful to improve sEMG activity.


Subject(s)
Kinesiology, Applied , Quadriceps Muscle/physiology , Volleyball , Adult , Electromyography , Female , Healthy Volunteers , Humans , Male , Placebos , Prospective Studies , Young Adult
5.
J Hum Kinet ; 41: 89-98, 2014 Jun 28.
Article in English | MEDLINE | ID: mdl-25114735

ABSTRACT

Vibration training has become a popular method used in professional sports and recreation. In this study, we examined the effect of whole-body vibration training on the central nervous system and muscle excitability in a group of 28 active men. Subjects were assigned randomly to one of two experimental groups with different variables of vibrations. The chronaximetry method was used to evaluate the effect of a single session of whole-body vibration training on the excitability of the rectus femoris and brachioradialis muscles. The examination of the fusing and flickering frequencies of the light stimulus was performed. An increase in the excitability of the quadriceps femoris muscle due to low intensity vibrations (20 Hz frequency, 2 mm amplitude) was noted, and a return to the initial values was observed 30 min after the application of vibration. High intensity vibrations (60 Hz frequency, 4 mm amplitude) caused elongations of the chronaxy time; however, these differences were not statistically significant. Neither a low intensity vibration amplitude of 2 mm (frequency of 20 Hz) nor a high intensity vibration amplitude of 4 mm (frequency of 60 Hz) caused a change in the excitability of the central nervous system, as revealed by the average frequency of the fusing and flickering of the light stimulus. A single session of high intensity whole-body vibration did not significantly decrease the excitability of the peripheral nervous system while the central nervous system did not seem to be affected.

SELECTION OF CITATIONS
SEARCH DETAIL
...