Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 19(8)2019 Apr 13.
Article in English | MEDLINE | ID: mdl-31013905

ABSTRACT

The paper introduces an artificial neural network ensemble for decentralized control of traffic signals based on data from sensor network. According to the decentralized approach, traffic signals at each intersection are controlled independently using real-time data obtained from sensor nodes installed along traffic lanes. In the proposed ensemble, a neural network, which reflects design of signalized intersection, is combined with fully connected neural networks to enable evaluation of signal group priorities. Based on the evaluated priorities, control decisions are taken about switching traffic signals. A neuroevolution strategy is used to optimize configuration of the introduced neural network ensemble. The proposed solution was compared against state-of-the-art decentralized traffic control algorithms during extensive simulation experiments. The experiments confirmed that the proposed solution provides better results in terms of reduced vehicle delay, shorter travel time, and increased average velocity of vehicles.

2.
Sensors (Basel) ; 18(10)2018 Sep 26.
Article in English | MEDLINE | ID: mdl-30261665

ABSTRACT

This paper reviews low-cost vehicle and pedestrian detection methods and compares their accuracy. The main goal of this survey is to summarize the progress achieved to date and to help identify the sensing technologies that provide high detection accuracy and meet requirements related to cost and ease of installation. Special attention is paid to wireless battery-powered detectors of small dimensions that can be quickly and effortlessly installed alongside traffic lanes (on the side of a road or on a curb) without any additional supporting structures. The comparison of detection methods presented in this paper is based on results of experiments that were conducted with a variety of sensors in a wide range of configurations. During experiments various sensor sets were analyzed. It was shown that the detection accuracy can be significantly improved by fusing data from appropriately selected set of sensors. The experimental results reveal that accurate vehicle detection can be achieved by using sets of passive sensors. Application of active sensors was necessary to obtain satisfactory results in case of pedestrian detection.

SELECTION OF CITATIONS
SEARCH DETAIL
...