Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Zool A Ecol Integr Physiol ; 329(2): 72-79, 2018 02.
Article in English | MEDLINE | ID: mdl-29791087

ABSTRACT

All amphibian species are known to have genetic sex determination. However, a variety of environmental conditions can moderate sexual differentiation, in some cases leading to sex reversal and skewed sex ratios. While there has been a recent focus on chemically-induced sex reversal in amphibians, temperature can also influence sexual differentiation. Building upon a classic 1929 study by Emil Witschi, we assessed temperature-mediated sex reversal. Witschi found that the wood frog sex ratio is 100% male at a high temperature (32°C) compared to a 50:50 sex ratio at 20°C. This pattern is consistent with multiple models of environmentally mediated sexual differentiation in vertebrates. To better understand thermally mediated sex reversal, we raised wood frogs at temperature increments of ∼1°C between 19 and 34°C. Mirroring earlier findings, wood frog metamorph sex ratios are indistinguishable from 50:50 at the lowest temperature and entirely male at the highest temperatures. In between, sex ratios become increasingly male-dominated as temperatures increase, implying a steadily increasing tendency toward female-to-male sex reversal in warmer environments. There was no evidence of a threshold temperature effect on reversal patterns. We also show that, compared to males, females metamorphose larger and later in cooler conditions but earlier and smaller under warmer conditions. While the ecological relevance in this species is unknown, these results conform to the Charnov-Bull model of sex determination (in which female-to-male sex reversal can increase fitness to genetic females at higher temperatures), suggesting the system would reward further study.


Subject(s)
Ranidae/growth & development , Temperature , Animals , Female , Larva/growth & development , Male , Metamorphosis, Biological
2.
Environ Pollut ; 214: 169-176, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27086072

ABSTRACT

Estuarine wetlands are major contributors to mercury (Hg) transformation into its more toxic form, methylmercury (MeHg). Although these complex habitats are important, estuarine Hg bioaccumulation is not well understood. The longnose gar Lepisosteus osseus (L. 1758), an estuarine predator in the eastern United States, was selected to examine Hg processes due to its abundance, estuarine residence, and top predator status. This study examined variability in Hg concentrations within longnose gar muscle tissue spatially and temporally, the influence of biological factors, potential maternal transfer, and potential negative health effects on these fish. Smaller, immature fish had the highest Hg concentrations and were predominantly located in low salinity waters. Sex and diet were also important factors and Hg levels peaked in the spring. Although maternal transfer occurred in small amounts, the potential negative health effects to young gar remain unknown. Fish health as measured by fecundity and growth rate appeared to be relatively unaffected by Hg at concentrations in the present study (less than 1.3 ppm wet weight). The analysis of biotic and abiotic factors relative to tissue Hg concentrations in a single estuarine fish species provided valuable insight in Hg bioaccumulation, biomagnification, and elimination. Insights such as these can improve public health policy and environmental management decisions related to Hg pollution.


Subject(s)
Environmental Monitoring/methods , Fishes , Mercury/analysis , Methylmercury Compounds/analysis , Water Pollutants, Chemical/analysis , Animals , Ecosystem , Female , Male , Seasons , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL
...