Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38921937

ABSTRACT

This study investigates the phase composition, microstructure, and their influence on the properties of Mo-W-C nanocomposite films deposited by dual-source magnetron sputtering. The synthesised films consist of metal carbide nanograins embedded in an amorphous carbon matrix. It has been found that nanograins are composed of the hexagonal ß-(Mo2 + W2)C phase at a low carbon source power. An increase in the power results in the change in the structure of the carbide nanoparticles from a single-phase to a mixture of the ß-(Mo2 + W2)C and NaCl-type α-(Mo + W)C(0.65≤k≤1) solid-solution phases. The analysis of electrical properties demonstrates that the nanograin structure of the films favours the occurrence of hopping conductivity. The double-phase structure leads to a twofold increase in the relaxation time compared to the single-phase one. Films with both types of nanograin structures exhibit tunnelling conductance without the need for thermal activation. The average distance between the potential wells produced by the carbide nanograins in nanocomposite films is approximately 3.4 ± 0.2 nm. A study of tribomechanical properties showed that Mo-W-C films composed of a mixture of the ß-(Mo2 + W2)C and α-(Mo + W)C(0.65≤k≤1) phases have the highest hardness (19-22 GPa) and the lowest friction coefficient (0.15-0.24) and wear volume (0.00302-0.00381 mm2). Such a combination of electrical and tribomechanical properties demonstrates the suitability of Mo-W-C nanocomposite films for various micromechanical devices and power electronics.

2.
ACS Omega ; 9(15): 17247-17265, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38645329

ABSTRACT

Hard nitride coatings are commonly employed to protect components subjected to friction, whereby such coatings should possess excellent tribomechanical properties in order to endure high stresses and temperatures. In this study, WN/NbN coatings are synthesized by using the cathodic-arc evaporation (CA-PVD) technique at various negative bias voltages in the 50-200 V range. The phase composition, microstructural features, and tribomechanical properties of the multilayers are comprehensively studied. Fabricated coatings have a complex structure of three nanocrystalline phases: ß-W2N, δ-NbN, and ε-NbN. They demonstrate a tendency for (111)-oriented grains to overgrow (200)-oriented grains with increasing coating thickness. All of the data show that a decrease in the fraction of ε-NbN phase and formation of the (111)-textured grains positively impact mechanical properties and wear behavior. Investigation of the room-temperature tribological properties reveals that with an increase in bias voltage from -50 to -200 V, the wear mechanisms change as follows: oxidative → fatigue and oxidative → adhesive and oxidative. Furthermore, WN/NbN coatings demonstrate a high hardness of 33.6-36.6 GPa and a low specific wear rate of (1.9-4.1) × 10-6 mm3/Nm. These results indicate that synthesized multilayers hold promise for tribological applications as wear-resistant coatings.

3.
Article in English | MEDLINE | ID: mdl-36892008

ABSTRACT

New conductive materials for tissue engineering are needed for the development of regenerative strategies for nervous, muscular, and heart tissues. Polycaprolactone (PCL) is used to obtain biocompatible and biodegradable nanofiber scaffolds by electrospinning. MXenes, a large class of biocompatible 2D nanomaterials, can make polymer scaffolds conductive and hydrophilic. However, an understanding of how their physical properties affect potential biomedical applications is still lacking. We immobilized Ti3C2Tx MXene in several layers on the electrospun PCL membranes and used positron annihilation analysis combined with other techniques to elucidate the defect structure and porosity of nanofiber scaffolds. The polymer base was characterized by the presence of nanopores. The MXene surface layers had abundant vacancies at temperatures of 305-355 K, and a voltage resonance at 8 × 104 Hz with the relaxation time of 6.5 × 106 s was found in the 20-355 K temperature interval. The appearance of a long-lived component of the positron lifetime was observed, which was dependent on the annealing temperature. The study of conductivity of the composite scaffolds in a wide temperature range, including its inductive and capacity components, showed the possibility of the use of MXene-coated PCL membranes as conductive biomaterials. The electronic structure of MXene and the defects formed in its layers were correlated with the biological properties of the scaffolds in vitro and in bacterial adhesion tests. Double and triple MXene coatings formed an appropriate environment for cell attachment and proliferation with mild antibacterial effects. A combination of structural, chemical, electrical, and biological properties of the PCL-MXene composite demonstrated its advantage over the existing conductive scaffolds for tissue engineering.

4.
Nanomaterials (Basel) ; 12(3)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35159740

ABSTRACT

Due to the increased demands for drilling and cutting tools working at extreme machining conditions, protective coatings are extensively utilized to prolong the tool life and eliminate the need for lubricants. The present work reports on the effect of a second MeN (Me = Zr, Cr, Mo, Nb) layer in WN-based nanocomposite multilayers on microstructure, phase composition, and mechanical and tribological properties. The WN/MoN multilayers have not been studied yet, and cathodic-arc physical vapor deposition (CA-PVD) has been used to fabricate studied coating systems for the first time. Moreover, first-principles calculations were performed to gain more insight into the properties of deposited multilayers. Two types of coating microstructure with different kinds of lattices were observed: (i) face-centered cubic (fcc) on fcc-W2N (WN/CrN and WN/ZrN) and (ii) a combination of hexagonal and fcc on fcc-W2N (WN/MoN and WN/NbN). Among the four studied systems, the WN/NbN had superior properties: the lowest specific wear rate (1.7 × 10-6 mm3/Nm) and high hardness (36 GPa) and plasticity index H/E (0.93). Low surface roughness, high elastic strain to failure, Nb2O5 and WO3 tribofilms forming during sliding, ductile behavior of NbN, and nanocomposite structure contributed to high tribological performance. The results indicated the suitability of WN/NbN as a protective coating operating in challenging conditions.

5.
Nanomaterials (Basel) ; 11(12)2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34947759

ABSTRACT

A new class of two-dimensional nanomaterials, MXenes, which are carbides/nitrides/carbonitrides of transition and refractory metals, has been critically analyzed. Since the synthesis of the first family member in 2011 by Yury Gogotsi and colleagues, MXenes have quickly become attractive for a variety of research fields due to their exceptional properties. Despite the fact that this new family of 2D materials was discovered only about ten years ago, the number of scientific publications related to MXene almost doubles every year. Thus, in 2021 alone, more than 2000 papers are expected to be published, which indicates the relevance and prospects of MXenes. The current paper critically analyzes the structural features, properties, and methods of synthesis of MXenes based on recent available research data. We demonstrate the recent trends of MXene applications in various fields, such as environmental pollution removal and water desalination, energy storage and harvesting, quantum dots, sensors, electrodes, and optical devices. We focus on the most important medical applications: photo-thermal cancer therapy, diagnostics, and antibacterial treatment. The first results on obtaining and studying the structure of high-entropy MXenes are also presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...