Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38606884

ABSTRACT

A comprehensive investigation of the solution-phase photophysics of tetracene bis-carboxylic acid [5,12-tetracenepropiolic acid (Tc-DA)] and its related methyl ester [5,12-tetracenepropynoate (Tc-DE)], a non-hydrogen-bonding counterpart, reveals the role of the carboxylic acid moiety in driving molecular aggregation and concomitant excited-state behavior. Low-concentration solutions of Tc-DA exhibit similar properties to the popular 5,12-bis((triisopropylsilyl)ethynl)tetracene, but as the concentration increases, evidence for aggregates that form excimers and a new mixed-state species with charge-transfer (CT) and correlated triplet pair (TT) character is revealed by transient absorption and fluorescence experiments. Aggregates of Tc-DA evolve further with concentration toward an additional phase that is dominated by the mixed CT/TT state which is the only state present in Tc-DE aggregates and can be modulated with the solvent polarity. Computational modeling finds that cofacial arrangement of Tc-DA and Tc-DE subunits is the most stable aggregate structure and this agrees with results from 1H NMR spectroscopy. The calculated spectra of these cofacial dimers replicate the observed broadening in ground-state absorption as well as accurately predict the formation of a near-UV transition associated with a CT between molecular subunits that is unique to the specific aggregate structure. Taken together, the results suggest that the hydrogen bonding between Tc-DA molecules and the associated disruption of hydrogen bonding with solvent produce a regime of dimer-like behavior, absent in Tc-DE, that favors excimers rather than CT/TT mixed states. The control of aggregate size and structure using distinct functional groups, solute concentration, and solvent in tetracene promises new avenues for its use in light-harvesting schemes.

2.
Nat Commun ; 14(1): 1180, 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36859382

ABSTRACT

Singlet fission, a process that splits a singlet exciton into a biexciton, has promise in quantum information. We report time-resolved electron paramagnetic resonance measurements on a conformationally well-defined acene dimer molecule, TIPS-BP1', designed to exhibit strongly state-selective relaxation to specific magnetic spin sublevels. The resulting optically pumped spin polarization is a nearly pure initial state from the ensemble. The long-lived spin coherences modulate the signal intrinsically, allowing a measurement scheme that substantially removes noise and uncertainty in the magnetic resonance spectra. A nonadiabatic transition theory with a minimal number of spectroscopic parameters allows the quantitative assignment and interpretation of the spectra. In this work, we show that the rigid dimer TIPS-BP1' supports persistent spin coherences at temperatures far higher than those used in conventional superconducting quantum hardware.

3.
Proc Natl Acad Sci U S A ; 119(29): e2201879119, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35858318

ABSTRACT

The photo-driven process of singlet fission generates coupled triplet pairs (TT) with fundamentally intriguing and potentially useful properties. The quintet 5TT0 sublevel is particularly interesting for quantum information because it is highly entangled, is addressable with microwave pulses, and could be detected using optical techniques. Previous theoretical work on a model Hamiltonian and nonadiabatic transition theory, called the JDE model, has determined that this sublevel can be selectively populated if certain conditions are met. Among the most challenging, the molecules within the dimer undergoing singlet fission must have their principal magnetic axes parallel to one another and to an applied Zeeman field. Here, we present time-resolved electron paramagnetic resonance (TR-EPR) spectroscopy of a single crystal sample of a tetracenethiophene compound featuring arrays of dimers aligned in this manner, which were mounted so that the orientation of the field relative to the molecular axes could be controlled. The observed spin sublevel populations in the paired TT and unpaired (T+T) triplets are consistent with predictions from the JDE model, including preferential 5TT0 formation at z ‖ B0, with one caveat-two 5TT spin sublevels have little to no population. This may be due to crossings between the 5TT and 3TT manifolds in the field range investigated by TR-EPR, consistent with the intertriplet exchange energy determined by monitoring photoluminescence at varying magnetic fields.

4.
J Chem Phys ; 155(19): 194109, 2021 Nov 21.
Article in English | MEDLINE | ID: mdl-34800954

ABSTRACT

Short coherence times present a primary obstacle in quantum computing and sensing applications. In atomic systems, clock transitions (CTs), formed from avoided crossings in an applied Zeeman field, can substantially increase coherence times. We show how CTs can dampen intrinsic and extrinsic sources of quantum noise in molecules. Conical intersections between two periodic potentials form CTs in electron paramagnetic resonance experiments of the spin-polarized singlet fission photoproduct. We report on a pair of CTs for a two-chromophore molecule in terms of the Zeeman field strength, molecular orientation relative to the field, and molecular geometry.

5.
Sci Rep ; 10(1): 18480, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33116218

ABSTRACT

Singlet fission is a photoconversion process that generates a doubly excited, maximally spin entangled pair state. This state has applications to quantum information and computing that are only beginning to be realized. In this article, we construct and analyze a spin-exciton hamiltonian to describe the dynamics of the two-triplet state. We find the selection rules that connect the doubly excited, spin-singlet state to the manifold of quintet states and comment on the mechanism and conditions for the transition into formally independent triplets. For adjacent dimers that are oriented and immobilized in an inert host, singlet fission can be strongly state-selective. We make predictions for electron paramagnetic resonance experiments and analyze experimental data from recent literature. Our results give conditions for which magnetic resonance pulses can drive transitions between optically polarized magnetic sublevels of the two-exciton states, making it possible to realize quantum gates at room temperature in these systems.

6.
J Phys Chem Lett ; 8(5): 948-953, 2017 Mar 02.
Article in English | MEDLINE | ID: mdl-28181440

ABSTRACT

While organometal halide perovskites are promising for a variety of optoelectronic applications, the morphological and compositional defects introduced by solution processing techniques have hindered efforts at understanding their fundamental properties. To provide a detailed picture of the intrinsic carrier transport properties of methylammonium lead iodide without contributions from defects such as grain boundaries, we utilized pump-probe microscopy to measure diffusion in individual crystalline domains of a thin film. Direct imaging of carrier transport in 25 individual domains yields diffusivities between 0.74 and 1.77 cm2 s-1, demonstrating single-crystal-like, long-range transport characteristics in a thin film architecture. We also examine the effects of excitation density on carrier diffusivity, finding that transport is nearly independent of photoexcited carrier density between 6 × 1017 cm-3 and 4 × 1019 cm-3. Transport modeling of the observed density independence suggests that strong carrier-phonon scattering coupled with a large static relative permittivity is responsible for the unusual transport characteristics of methylammonium perovskite.

SELECTION OF CITATIONS
SEARCH DETAIL
...