Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37333230

ABSTRACT

Central sensitization is a critical step in chronic neuropathic pain formation following acute nerve injury. Central sensitization is defined by nociceptive and somatosensory circuitry changes in the spinal cord leading to dysfunction of antinociceptive gamma-aminobutyric acid (GABA)ergic cells (Li et al., 2019), amplification of ascending nociceptive signals, and hypersensitivity (Woolf, 2011). Astrocytes are key mediators of the neurocircuitry changes that underlie central sensitization and neuropathic pain, and astrocytes respond to and regulate neuronal function through complex Ca2+ signaling mechanisms. Clear definition of the astrocyte Ca2+ signaling mechanisms involved in central sensitization may lead to new therapeutic targets for treatment of chronic neuropathic pain, as well as enhance our understanding of the complex central nervous system (CNS) adaptions that occur following nerve injury. Ca2+ release from astrocyte endoplasmic reticulum (ER) Ca2+ stores via the inositol 1,4,5-trisphosphate receptor (IP3R) is required for centrally mediated neuropathic pain (Kim et al, 2016); however recent evidence suggests the involvement of additional astrocyte Ca2+ signaling mechanisms. We therefore investigated the role of astrocyte store-operated Ca2+ entry (SOCE), which mediates Ca2+ influx in response to ER Ca2+ store depletion. Using an adult Drosophila melanogaster model of central sensitization based on thermal allodynia in response to leg amputation nerve injury (Khuong et al., 2019), we show that astrocytes exhibit SOCE-dependent Ca2+ signaling events three to four days following nerve injury. Astrocyte-specific suppression of Stim and Orai, the key mediators of SOCE Ca2+ influx, completely inhibited the development of thermal allodynia seven days following injury, and also inhibited the loss of ventral nerve cord (VNC) GABAergic neurons that is required for central sensitization in flies. We lastly show that constitutive SOCE in astrocytes results in thermal allodynia even in the absence of nerve injury. Our results collectively demonstrate that astrocyte SOCE is necessary and sufficient for central sensitization and development of hypersensitivity in Drosophila, adding key new understanding to the astrocyte Ca2+ signaling mechanisms involved in chronic pain.

2.
Front Cell Dev Biol ; 10: 788516, 2022.
Article in English | MEDLINE | ID: mdl-35663400

ABSTRACT

In this study, we examine the cause and progression of mitochondrial diseases linked to the loss of mtRNase P, a three-protein complex responsible for processing and cleaving mitochondrial transfer RNAs (tRNA) from their nascent transcripts. When mtRNase P function is missing, mature mitochondrial tRNA levels are decreased, resulting in mitochondrial dysfunction. mtRNase P is composed of Mitochondrial RNase P Protein (MRPP) 1, 2, and 3. MRPP1 and 2 have their own enzymatic activity separate from MRPP3, which is the endonuclease responsible for cleaving tRNA. Human mutations in all subunits cause mitochondrial disease. The loss of mitochondrial function can cause devastating, often multisystemic failures. When mitochondria do not provide enough energy and metabolites, the result can be skeletal muscle weakness, cardiomyopathy, and heart arrhythmias. These symptoms are complex and often difficult to interpret, making disease models useful for diagnosing disease onset and progression. Previously, we identified Drosophila orthologs of each mtRNase P subunit (Roswell/MRPP1, Scully/MRPP2, Mulder/MRPP3) and found that the loss of each subunit causes lethality and decreased mitochondrial tRNA processing in vivo. Here, we use Drosophila to model mtRNase P mitochondrial diseases by reducing the level of each subunit in skeletal and heart muscle using tissue-specific RNAi knockdown. We find that mtRNase P reduction in skeletal muscle decreases adult eclosion and causes reduced muscle mass and function. Adult flies exhibit significant age-progressive locomotor defects. Cardiac-specific mtRNase P knockdowns reduce fly lifespan for Roswell and Scully, but not Mulder. Using intravital imaging, we find that adult hearts have impaired contractility and exhibit substantial arrhythmia. This occurs for roswell and mulder knockdowns, but with little effect for scully. The phenotypes shown here are similar to those exhibited by patients with mitochondrial disease, including disease caused by mutations in MRPP1 and 2. These findings also suggest that skeletal and cardiac deficiencies induced by mtRNase P loss are differentially affected by the three subunits. These differences could have implications for disease progression in skeletal and heart muscle and shed light on how the enzyme complex functions in different tissues.

3.
J Cell Sci ; 135(5)2022 03 01.
Article in English | MEDLINE | ID: mdl-34415038

ABSTRACT

Membrane contact sites are critical junctures for organelle signaling and communication. Endoplasmic reticulum-plasma membrane (ER-PM) contact sites were the first membrane contact sites to be described; however, the protein composition and molecular function of these sites is still emerging. Here, we leverage yeast and Drosophila model systems to uncover a novel role for the Hobbit (Hob) proteins at ER-PM contact sites. We find that Hobbit localizes to ER-PM contact sites in both yeast cells and the Drosophila larval salivary glands, and this localization is mediated by an N-terminal ER membrane anchor and conserved C-terminal sequences. The C-terminus of Hobbit binds to plasma membrane phosphatidylinositols, and the distribution of these lipids is altered in hobbit mutant cells. Notably, the Hobbit protein is essential for viability in Drosophila, providing one of the first examples of a membrane contact site-localized lipid binding protein that is required for development.


Subject(s)
Carrier Proteins , Drosophila Proteins/genetics , Endoplasmic Reticulum , Vesicular Transport Proteins/genetics , Animals , Cell Membrane/metabolism , Drosophila melanogaster , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Phosphatidylinositols , Saccharomyces cerevisiae
4.
Am J Physiol Heart Circ Physiol ; 322(2): H296-H309, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34951542

ABSTRACT

Heart failure is often preceded by pathological cardiac hypertrophy, a thickening of the heart musculature driven by complex gene regulatory and signaling processes. The Drosophila heart has great potential as a genetic model for deciphering the underlying mechanisms of cardiac hypertrophy. However, current methods for evaluating hypertrophy of the Drosophila heart are laborious and difficult to carry out reproducibly. Here, we demonstrate that microcomputerized tomography (microCT) is an accessible, highly reproducible method for nondestructive, quantitative analysis of Drosophila heart morphology and size. To validate our microCT approach for analyzing Drosophila cardiac hypertrophy, we show that expression of constitutively active Ras (Ras85DV12), previously shown to cause hypertrophy of the fly heart, results in significant thickening of both adult and larval heart walls when measured from microCT images. We then show using microCT analysis that genetic upregulation of store-operated Ca2+ entry (SOCE) driven by expression of constitutively active Stim (StimCA) or Orai (OraiCA) proteins also results in significant hypertrophy of the Drosophila heart, through a process that specifically depends on Orai Ca2+ influx channels. Intravital imaging of heart contractility revealed significantly reduced end-diastolic and end-systolic dimensions in StimCA- and OraiCA-expressing hearts, consistent with the hypertrophic phenotype. These results demonstrate that increased SOCE activity is an important driver of hypertrophic cardiomyocyte growth, and demonstrate how microCT analysis combined with tractable genetic tools in Drosophila can be used to delineate molecular signaling processes that underlie cardiac hypertrophy and heart failure.NEW & NOTEWORTHY Genetic analysis of Drosophila cardiac hypertrophy holds immense potential for the discovery of new therapeutic targets to prevent and treat heart failure. This potential has been hindered by a lack of rapid and effective methods for analyzing heart size in flies. Here, we demonstrate that analysis of the Drosophila heart with microcomputerized tomography yields accurate and highly reproducible heart size measurements that can be used to analyze heart growth and cardiac hypertrophy in Drosophila.


Subject(s)
Cardiomegaly/genetics , Heart/growth & development , X-Ray Microtomography/methods , Animals , Calcium Signaling , Cardiomegaly/diagnostic imaging , Drosophila Proteins/metabolism , Drosophila melanogaster , ORAI1 Protein/metabolism , Stromal Interaction Molecule 1/metabolism , ras Proteins/metabolism
5.
Physiol Rep ; 8(24): e14675, 2021 01.
Article in English | MEDLINE | ID: mdl-33356020

ABSTRACT

We recently discovered that the histone deacetylase inhibitor, trichostatin A (TSA), increases expression of the sulfonylurea receptor 2 (SUR2; Abcc9) subunit of the ATP-sensitive K+ (KATP ) channel in HL-1 cardiomyocytes. Interestingly, the increase in SUR2 was abolished with exogenous cholesterol, suggesting that cholesterol may regulate channel expression. In the present study, we tested the hypothesis that TSA increases SUR2 by depleting cholesterol and activating the sterol response element binding protein (SREBP) family of transcription factors. Treatment of HL-1 cardiomyocytes with TSA (30 ng/ml) caused a time-dependent increase in SUR2 mRNA expression that correlates with the time course of cholesterol depletion assessed by filipin staining. Consistent with the cholesterol-dependent regulation of SREBP increasing SUR2 mRNA expression, we observe a significant increase in SREBP cleavage and translocation to the nucleus following TSA treatment that is inhibited by exogenous cholesterol. Further supporting the role of SREBP in mediating the effect of TSA on KATP subunit expression, SREBP1 significantly increased luciferase reporter gene expression driven by the upstream SUR2 promoter. Lastly, HL-1 cardiomyocytes treated with the SREBP inhibitor PF429242 significantly suppresses the effect of TSA on SUR2 gene expression. These results demonstrate that SREBP is an important regulator of KATP channel expression and suggest a novel method by which hypercholesterolemia may exert negative effects on the cardiovascular system, namely, by suppressing expression of the KATP channel.


Subject(s)
Cholesterol/metabolism , Myocytes, Cardiac/metabolism , Sulfonylurea Receptors/metabolism , Animals , COS Cells , Chlorocebus aethiops , Histone Deacetylase Inhibitors/pharmacology , Humans , Hydroxamic Acids/pharmacology , Myocytes, Cardiac/drug effects , Sterol Regulatory Element Binding Protein 1/metabolism , Sulfonylurea Receptors/genetics
6.
J Vis Exp ; (159)2020 05 19.
Article in English | MEDLINE | ID: mdl-32510475

ABSTRACT

Experimental analysis of cells dividing in living, intact tissues and organs is essential to our understanding of how cell division integrates with development, tissue homeostasis, and disease processes. Drosophila spermatocytes undergoing meiosis are ideal for this analysis because (1) whole Drosophila testes containing spermatocytes are relatively easy to prepare for microscopy, (2) the spermatocytes' large size makes them well suited for high resolution imaging, and (3) powerful Drosophila genetic tools can be integrated with in vivo analysis. Here, we present a readily accessible protocol for the preparation of whole testes from Drosophila third instar larvae and early pupae. We describe how to identify meiotic spermatocytes in prepared whole testes and how to image them live by time-lapse microscopy. Protocols for fixation and immunostaining whole testes are also provided. The use of larval testes has several advantages over available protocols that use adult testes for spermatocyte analysis. Most importantly, larval testes are smaller and less crowded with cells than adult testes, and this greatly facilitates high resolution imaging of spermatocytes. To demonstrate these advantages and the applications of the protocols, we present results showing the redistribution of the endoplasmic reticulum with respect to spindle microtubules during cell division in a single spermatocyte imaged by time-lapse confocal microscopy. The protocols can be combined with expression of any number of fluorescently tagged proteins or organelle markers, as well as gene mutations and other genetic tools, making this approach especially powerful for analysis of cell division mechanisms in the physiological context of whole tissues and organs.


Subject(s)
Cell Division/physiology , Drosophila/pathogenicity , Larva/pathogenicity , Microscopy, Confocal/methods , Pupa/pathogenicity , Testis/metabolism , Animals , Male , Testis/cytology
7.
Skelet Muscle ; 10(1): 16, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32384912

ABSTRACT

Spinal muscular atrophy (SMA) is a neurodegenerative disease characterized by loss of alpha motor neurons and skeletal muscle atrophy. The disease is caused by mutations of the SMN1 gene that result in reduced functional expression of survival motor neuron (SMN) protein. SMN is ubiquitously expressed, and there have been reports of cardiovascular dysfunction in the most severe SMA patients and animal models of the disease. In this study, we directly assessed the function of cardiomyocytes isolated from a severe SMA model mouse and cardiomyocytes generated from patient-derived IPSCs. Consistent with impaired cardiovascular function at the very early disease stages in mice, heart failure markers such as brain natriuretic peptide were significantly elevated. Functionally, cardiomyocyte relaxation kinetics were markedly slowed and the T50 for Ca2+ sequestration increased to 146 ± 4 ms in SMN-deficient cardiomyocytes from 126 ± 4 ms in wild type cells. Reducing SMN levels in cardiomyocytes from control patient IPSCs slowed calcium reuptake similar to SMA patent-derived cardiac cells. Importantly, restoring SMN increased calcium reuptake rate. Taken together, these results indicate that SMN deficiency impairs cardiomyocyte function at least partially through intracellular Ca2+ cycling dysregulation.


Subject(s)
Calcium Signaling , Induced Pluripotent Stem Cells/metabolism , Muscular Atrophy, Spinal/metabolism , Myocytes, Cardiac/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Survival of Motor Neuron 1 Protein/genetics , Animals , Cell Line , Cells, Cultured , Humans , Mice , Muscular Atrophy, Spinal/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics
8.
Biol Open ; 9(3)2020 03 11.
Article in English | MEDLINE | ID: mdl-32086252

ABSTRACT

Store-operated Ca2+ entry (SOCE) is an essential Ca2+ signaling mechanism present in most animal cells. SOCE refers to Ca2+ influx that is activated by depletion of sarco/endoplasmic reticulum (S/ER) Ca2+ stores. The main components of SOCE are STIM and Orai. STIM proteins function as S/ER Ca2+ sensors, and upon S/ER Ca2+ depletion STIM rearranges to S/ER-plasma membrane junctions and activates Orai Ca2+ influx channels. Studies have implicated SOCE in cardiac hypertrophy pathogenesis, but SOCE's role in normal heart physiology remains poorly understood. We therefore analyzed heart-specific SOCE function in Drosophila, a powerful animal model of cardiac physiology. We show that heart-specific suppression of Stim and Orai in larvae and adults resulted in reduced contractility consistent with dilated cardiomyopathy. Myofibers were also highly disorganized in Stim and Orai RNAi hearts, reflecting possible decompensation or upregulated stress signaling. Furthermore, we show that reduced heart function due to SOCE suppression adversely affected animal viability, as heart specific Stim and Orai RNAi animals exhibited significant delays in post-embryonic development and adults died earlier than controls. Collectively, our results demonstrate that SOCE is essential for physiological heart function, and establish Drosophila as an important model for understanding the role of SOCE in cardiac pathophysiology.


Subject(s)
Calcium Signaling , Calcium/metabolism , Cardiomyopathy, Dilated/metabolism , Drosophila/metabolism , Myocardium/metabolism , Animals , Biomarkers , Calcium Channels/metabolism , Cardiomyopathy, Dilated/etiology , Cardiomyopathy, Dilated/pathology , Disease Models, Animal , Disease Susceptibility , Endoplasmic Reticulum/metabolism , Myocardium/pathology , Myocardium/ultrastructure , Stromal Interaction Molecule 1/metabolism
9.
Sci Rep ; 9(1): 12456, 2019 08 28.
Article in English | MEDLINE | ID: mdl-31462700

ABSTRACT

In dividing animal cells the endoplasmic reticulum (ER) concentrates around the poles of the spindle apparatus by associating with astral microtubules (MTs), and this association is essential for proper ER partitioning to progeny cells. The mechanisms that associate the ER with astral MTs are unknown. Because astral MT minus-ends are anchored by centrosomes at spindle poles, we hypothesized that the MT minus-end motor dynein mediates ER concentration around spindle poles. Live in vivo imaging of Drosophila spermatocytes revealed that dynein is required for ER concentration around centrosomes during late interphase. In marked contrast, however, dynein suppression had no effect on ER association with astral MTs and concentration around spindle poles in early M-phase. In fact, there was a sudden onset of ER association with astral MTs in dynein RNAi cells, revealing activation of an M-phase specific mechanism of ER-MT association. ER redistribution to spindle poles also did not require non-claret disjunctional (ncd), the other known Drosophila MT minus-end motor, nor Klp61F, a MT plus-end motor that generates spindle poleward forces. Collectively, our results suggest that a novel, M-phase specific mechanism of ER-MT association that is independent of MT minus-end motors is required for proper ER partitioning in dividing cells.


Subject(s)
Cell Division , Drosophila Proteins/metabolism , Dyneins/metabolism , Endoplasmic Reticulum/metabolism , Spermatocytes/metabolism , Spindle Poles/metabolism , Animals , Drosophila melanogaster , Male , Spermatocytes/cytology
10.
Open Biol ; 5(8)2015 Aug.
Article in English | MEDLINE | ID: mdl-26289801

ABSTRACT

Mechanisms that regulate partitioning of the endoplasmic reticulum (ER) during cell division are largely unknown. Previous studies have mostly addressed ER partitioning in cultured cells, which may not recapitulate physiological processes that are critical in developing, intact tissues. We have addressed this by analysing ER partitioning in asymmetrically dividing stem cells, in which precise segregation of cellular components is essential for proper development and tissue architecture. We show that in Drosophila neural stem cells, called neuroblasts, the ER asymmetrically partitioned to centrosomes early in mitosis. This correlated closely with the asymmetric nucleation of astral microtubules (MTs) by centrosomes, suggesting that astral MT association may be required for ER partitioning by centrosomes. Consistent with this, the ER also associated with astral MTs in meiotic Drosophila spermatocytes and during syncytial embryonic divisions. Disruption of centrosomes in each of these cell types led to improper ER partitioning, demonstrating the critical role for centrosomes and associated astral MTs in this process. Importantly, we show that the ER also associated with astral MTs in cultured human cells, suggesting that this centrosome/astral MT-based partitioning mechanism is conserved across animal species.


Subject(s)
Endoplasmic Reticulum/metabolism , Microtubules/metabolism , Animals , Cell Division , Cell Line , Drosophila , Humans , Intracellular Membranes/metabolism , Male , Mitosis/physiology , Spermatocytes/physiology , Spindle Apparatus
11.
Chromosome Res ; 21(3): 271-86, 2013 May.
Article in English | MEDLINE | ID: mdl-23681659

ABSTRACT

During cellular division, centrosomes are tasked with building the bipolar mitotic spindle, which partitions the cellular contents into two daughter cells. While every cell will receive an equal complement of chromosomes, not every organelle is symmetrically passaged to the two progeny in many cell types. In this review, we highlight the conservation of nonrandom centrosome segregation in asymmetrically dividing stem cells, and we discuss how the asymmetric function of centrosomes could mediate nonrandom segregation of organelles and mRNA. We propose that such a mechanism is critical for insuring proper cell fitness, function, and fate.


Subject(s)
Cell Lineage , Organelles/metabolism , Animals , Humans , Microtubule-Organizing Center/metabolism , Organelles/ultrastructure , Stem Cells/cytology , Stem Cells/metabolism
12.
Curr Biol ; 22(16): 1487-93, 2012 Aug 21.
Article in English | MEDLINE | ID: mdl-22748319

ABSTRACT

The endoplasmic reticulum (ER) undergoes significant reorganization between interphase and mitosis, but the underlying mechanisms are unknown. Stromal interaction molecule 1 (STIM1) is an ER Ca(2+) sensor that activates store-operated Ca(2+) entry (SOCE) and also functions in ER morphogenesis through its interaction with the microtubule +TIP protein end binding 1 (EB1). We previously demonstrated that phosphorylation of STIM1 during mitosis suppresses SOCE. We now show that STIM1 phosphorylation is a major regulatory mechanism that excludes ER from the mitotic spindle. In mitotic HeLa cells, the ER forms concentric sheets largely excluded from the mitotic spindle. We show that STIM1 dissociates from EB1 in mitosis and localizes to the concentric ER sheets. However, a nonphosphorylatable STIM1 mutant (STIM1(10A)) colocalized extensively with EB1 and drove ER mislocalization by pulling ER tubules into the spindle. This effect was rescued by mutating the EB1 interaction site of STIM1(10A), demonstrating that aberrant association of STIM1(10A) with EB1 is responsible for the ER mislocalization. A STIM1 phosphomimetic exhibited significantly impaired +TIP tracking in interphase but was ineffective at inhibiting SOCE, suggesting different mechanisms of regulation of these two STIM1 functions by phosphorylation. Thus, ER spindle exclusion and ER-dependent Ca(2+) signaling during mitosis require multimodal STIM1 regulation by phosphorylation.


Subject(s)
Endoplasmic Reticulum/physiology , Membrane Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Neoplasm Proteins/metabolism , Spindle Apparatus/physiology , Calcium/metabolism , HeLa Cells , Humans , Mitosis , Phosphorylation , Stromal Interaction Molecule 1
13.
Biochem Soc Trans ; 40(1): 119-23, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22260676

ABSTRACT

Store-operate Ca2+ channels gate Ca2+ entry into the cytoplasm in response to the depletion of Ca2+ from endoplasmic reticulum Ca2+ stores. The major molecular components of store-operated Ca2+ entry are STIM (stromal-interacting molecule) 1 (and in some instances STIM2) that serves as the endoplasmic reticulum Ca2+ sensor, and Orai (Orai1, Orai2 and Orai3) which function as pore-forming subunits of the store-operated channel. It has been known for some time that store-operated Ca2+ entry is shut down during cell division. Recent work has revealed complex mechanisms regulating the functions and locations of both STIM1 and Orai1 in dividing cells.


Subject(s)
Calcium Signaling , Cell Division , Animals , Calcium Channels/metabolism , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Humans , Intracellular Calcium-Sensing Proteins/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Neoplasm Proteins/chemistry , Neoplasm Proteins/metabolism , ORAI1 Protein , Protein Structure, Tertiary , Stromal Interaction Molecule 1
14.
J Cell Mol Med ; 14(10): 2337-49, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20807283

ABSTRACT

The process of store-operated Ca(2+) entry (SOCE), whereby Ca(2+) influx across the plasma membrane is activated in response to depletion of intracellular Ca(2+) stores in the endoplasmic reticulum (ER), has been under investigation for greater than 25 years; however, only in the past 5 years have we come to understand this mechanism at the molecular level. A surge of recent experimentation indicates that STIM molecules function as Ca(2+) sensors within the ER that, upon Ca(2+) store depletion, rearrange to sites very near to the plasma membrane. At these plasma membrane-ER junctions, STIM interacts with and activates SOCE channels of the Orai family. The molecular and biophysical data that have led to these findings are discussed in this review, as are several controversies within this rapidly expanding field.


Subject(s)
Calcium Channels/metabolism , Calcium Signaling/physiology , Calcium/metabolism , TRPC Cation Channels/metabolism , Animals , Cell Adhesion Molecules/metabolism , Cell Membrane/metabolism , Drosophila , Drosophila Proteins/metabolism , Endoplasmic Reticulum/metabolism , Gene Expression Regulation , Humans , Membrane Proteins/metabolism , Mice , ORAI1 Protein , Stromal Interaction Molecule 1 , Stromal Interaction Molecule 2
15.
Nat Cell Biol ; 11(12): 1465-72, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19881501

ABSTRACT

Store-operated Ca(2+) entry (SOCE) and Ca(2+) release-activated Ca(2+) currents (I(crac)) are strongly suppressed during cell division, the only known physiological situation in which Ca(2+) store depletion is uncoupled from the activation of Ca(2+) influx [corrected]. We found that the endoplasmic reticulum (ER) Ca(2+) sensor STIM1 failed to rearrange into near-plasma membrane puncta in mitotic cells, a critical step in the SOCE-activation pathway. We also found that STIM1 from mitotic cells is recognized by the phospho-specific MPM-2 antibody, suggesting that STIM1 is phosphorylated during mitosis. Removal of ten MPM-2 recognition sites by truncation at amino acid 482 abolished MPM-2 recognition of mitotic STIM1, and significantly rescued STIM1 rearrangement and SOCE response in mitosis. We identified Ser 486 and Ser 668 as mitosis-specific phosphorylation sites, and STIM1 containing mutations of these sites to alanine also significantly rescued mitotic SOCE. Therefore, phosphorylation of STIM1 at Ser 486 and Ser 668, and possibly other sites, underlies suppression of SOCE during mitosis.


Subject(s)
Calcium/metabolism , Membrane Proteins/metabolism , Mitosis , Neoplasm Proteins/metabolism , Calcium Channels/genetics , Calcium Channels/metabolism , Cell Line , Endoplasmic Reticulum/metabolism , Humans , Membrane Proteins/genetics , Neoplasm Proteins/genetics , ORAI1 Protein , Phosphorylation , Phosphoserine/metabolism , Protein Transport , Stromal Interaction Molecule 1
16.
Curr Biol ; 19(20): 1724-9, 2009 Nov 03.
Article in English | MEDLINE | ID: mdl-19765994

ABSTRACT

When cells are activated by calcium-mobilizing agonists at low, physiological concentrations, the resulting calcium signals generally take the form of repetitive regenerative discharges of stored calcium, termed calcium oscillations [1]. These intracellular calcium oscillations have long fascinated biologists as a mode of digitized intracellular signaling. Recent work has highlighted the role of calcium influx as an essential component of calcium oscillations [2]. This influx occurs through a process known as store-operated calcium entry, which is initiated by calcium sensor proteins, STIM1 and STIM2, in the endoplasmic reticulum [3]. STIM2 is activated by changes in endoplasmic reticulum calcium near the resting level, whereas a threshold of calcium depletion is required for STIM1 activation [4]. Here we show that, surprisingly, it is STIM1 and not STIM2 that is exclusively involved in calcium entry during calcium oscillations. The implication is that each oscillation produces a transient drop in endoplasmic reticulum calcium and that this drop is sufficient to transiently activate STIM1. This transient activation of STIM1 can be observed in some cells by total internal reflection fluorescence microscopy. This arrangement nicely provides a clearly defined and unambiguous signaling system, translating a digital calcium release signal into calcium influx that can signal to downstream effectors.


Subject(s)
Calcium Signaling , Calcium/metabolism , Membrane Proteins/physiology , Neoplasm Proteins/physiology , Calcium Channels/genetics , Calcium Channels/metabolism , Cell Adhesion Molecules/analysis , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/physiology , Cell Line , Endoplasmic Reticulum/metabolism , Humans , Membrane Proteins/analysis , Membrane Proteins/metabolism , Neoplasm Proteins/analysis , Neoplasm Proteins/metabolism , ORAI1 Protein , Stromal Interaction Molecule 1 , Stromal Interaction Molecule 2
17.
J Physiol ; 587(Pt 10): 2275-98, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19332491

ABSTRACT

Recent studies have defined roles for STIM1 and Orai1 as calcium sensor and calcium channel, respectively, for Ca(2+)-release activated Ca(2+) (CRAC) channels, channels underlying store-operated Ca(2+) entry (SOCE). In addition, these proteins have been suggested to function in signalling and constructing other channels with biophysical properties distinct from the CRAC channels. Using the human kidney cell line, HEK293, we examined the hypothesis that STIM1 can interact with and regulate members of a family of non-selective cation channels (TRPC) which have been suggested to also function in SOCE pathways under certain conditions. Our data reveal no role for either STIM1 or Orai1 in signalling of TRPC channels. Specifically, Ca(2+) entry seen after carbachol treatment in cells transiently expressing TRPC1, TRPC3, TRPC5 or TRPC6 was not enhanced by the co-expression of STIM1. Further, knockdown of STIM1 in cells expressing TRPC5 did not reduce TRPC5 activity, in contrast to one published report. We previously reported in stable TRPC7 cells a Ca(2+) entry which was dependent on TRPC7 and appeared store-operated. However, we show here that this TRPC7-mediated entry was also not dependent on either STIM1 or Orai1, as determined by RNA interference (RNAi) and expression of a constitutively active mutant of STIM1. Further, we determined that this entry was not actually store-operated, but instead TRPC7 activity which appears to be regulated by SERCA. Importantly, endogenous TRPC activity was also not regulated by STIM1. In vascular smooth muscle cells, arginine-vasopressin (AVP) activated non-selective cation currents associated with TRPC6 activity were not affected by RNAi knockdown of STIM1, while SOCE was largely inhibited. Finally, disruption of lipid rafts significantly attenuated TRPC3 activity, while having no effect on STIM1 localization or the development of I(CRAC). Also, STIM1 punctae were found to localize in regions distinct from lipid rafts. This suggests that TRPC signalling and STIM1/Orai1 signalling occur in distinct plasma membrane domains. Thus, TRPC channels appear to be activated by mechanisms dependent on phospholipase C which do not involve the Ca(2+) sensor, STIM1.


Subject(s)
Calcium Channels/physiology , Membrane Proteins/physiology , Neoplasm Proteins/physiology , TRPC Cation Channels/physiology , Arginine Vasopressin/pharmacology , Barium/pharmacology , Calcium Signaling/drug effects , Carbachol/pharmacology , Cell Adhesion Molecules/genetics , Cell Line , Cell Membrane/drug effects , Cell Membrane/metabolism , Chelating Agents/pharmacology , Diglycerides/pharmacology , Electrophysiological Phenomena/drug effects , Electrophysiological Phenomena/physiology , Gadolinium/pharmacology , Humans , Inositol 1,4,5-Trisphosphate/pharmacology , Membrane Microdomains/drug effects , Membrane Microdomains/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/physiology , ORAI1 Protein , RNA, Small Interfering/genetics , Stromal Interaction Molecule 1 , Stromal Interaction Molecule 2 , TRPC6 Cation Channel , Thapsigargin/pharmacology , Transfection , beta-Cyclodextrins/pharmacology
18.
Methods ; 46(3): 204-12, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18929662

ABSTRACT

Activation of surface membrane receptors coupled to phospholipase C results in the generation of cytoplasmic Ca2+ signals comprised of both intracellular Ca2+ release, and enhanced entry of Ca2+ across the plasma membrane. A primary mechanism for this Ca2+ entry process is attributed to store-operated Ca2+ entry, a process that is activated by depletion of Ca2+ ions from an intracellular store by inositol 1,4,5-trisphosphate. Our understanding of the mechanisms underlying both Ca2+ release and store-operated Ca2+ entry have evolved from experimental approaches that include the use of fluorescent Ca2+ indicators and electrophysiological techniques. Pharmacological manipulation of this Ca2+ signaling process has been somewhat limited; but recent identification of key molecular players, STIM and Orai family proteins, has provided new approaches. Here we describe practical methods involving fluorescent Ca2+ indicators and electrophysiological approaches for dissecting the observed intracellular Ca2+ signal to reveal characteristics of store-operated Ca2+ entry, highlighting the advantages, and limitations, of these approaches.


Subject(s)
Calcium/metabolism , Inositol 1,4,5-Trisphosphate/metabolism , Animals , Calcium Channels/metabolism , Calcium Signaling/drug effects , Calcium Signaling/physiology , Fluorescent Dyes/pharmacology , Humans , Receptors, Calcium-Sensing/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/antagonists & inhibitors
19.
J Biol Chem ; 283(28): 19265-73, 2008 Jul 11.
Article in English | MEDLINE | ID: mdl-18487204

ABSTRACT

Store-operated Ca2+ entry (SOCE) is likely the most common mode of regulated influx of Ca2+ into cells. However, only a limited number of pharmacological agents have been shown to modulate this process. 2-Aminoethyldiphenyl borate (2-APB) is a widely used experimental tool that activates and then inhibits SOCE and the underlying calcium release-activated Ca2+ current (I CRAC). The mechanism by which depleted stores activates SOCE involves complex cellular movements of an endoplasmic reticulum Ca2+ sensor, STIM1, which redistributes to puncta near the plasma membrane and, in some manner, activates plasma membrane channels comprising Orai1, -2, and -3 subunits. We show here that 2-APB blocks puncta formation of fluorescently tagged STIM1 in HEK293 cells. Accordingly, 2-APB also inhibited SOCE and I(CRAC)-like currents in cells co-expressing STIM1 with the CRAC channel subunit, Orai1, with similar potency. However, 2-APB inhibited STIM1 puncta formation less well in cells co-expressing Orai1, indicating that the inhibitory effects of 2-APB are not solely dependent upon STIM1 reversal. Further, 2-APB only partially inhibited SOCE and current in cells co-expressing STIM1 and Orai2 and activated sustained currents in HEK293 cells expressing Orai3 and STIM1. Interestingly, the Orai3-dependent currents activated by 2-APB showed large outward currents at potentials greater than +50 mV. Finally, Orai3, and to a lesser extent Orai1, could be directly activated by 2-APB, independently of internal Ca2+ stores and STIM1. These data reveal novel and complex actions of 2-APB effects on SOCE that can be attributed to effects on both STIM1 as well as Orai channel subunits.


Subject(s)
Boron Compounds/pharmacology , Calcium Channel Agonists/pharmacology , Calcium Channels/metabolism , Calcium/metabolism , Membrane Proteins/metabolism , Calcium Channels/genetics , Cell Line , Humans , Membrane Potentials/drug effects , Membrane Proteins/genetics , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , ORAI1 Protein , ORAI2 Protein , Stromal Interaction Molecule 1
20.
Curr Biol ; 18(3): 177-82, 2008 Feb 12.
Article in English | MEDLINE | ID: mdl-18249114

ABSTRACT

Stromal interaction molecule 1 (STIM1) is a transmembrane protein that is essential for store-operated Ca(2+) entry, a process of extracellular Ca(2+) influx in response to the depletion of Ca(2+) stores in the endoplasmic reticulum (ER) (reviewed in [1-4]). STIM1 localizes predominantly to the ER; upon Ca(2+) release from the ER, STIM1 translocates to the ER-plasma membrane junctions and activates Ca(2+) channels (reviewed in [1-4]). Here, we show that STIM1 directly binds to the microtubule-plus-end-tracking protein EB1 and forms EB1-dependent comet-like accumulations at the sites where polymerizing microtubule ends come in contact with the ER network. Therefore, the previously observed tubulovesicular motility of GFP-STIM1 [5] is not a motor-based movement but a traveling wave of diffusion-dependent STIM1 concentration in the ER membrane. STIM1 overexpression strongly stimulates ER extension occurring through the microtubule "tip attachment complex" (TAC) mechanism [6, 7], a process whereby an ER tubule attaches to and elongates together with the EB1-positive end of a growing microtubule. Depletion of STIM1 and EB1 decreases TAC-dependent ER protrusion, indicating that microtubule growth-dependent concentration of STIM1 in the ER membrane plays a role in ER remodeling.


Subject(s)
Endoplasmic Reticulum/metabolism , Membrane Proteins/metabolism , Microtubules/metabolism , Neoplasm Proteins/metabolism , Calcium/metabolism , Gene Expression Regulation , HeLa Cells , Humans , Membrane Proteins/genetics , Microtubule-Associated Proteins/metabolism , Neoplasm Proteins/genetics , Stromal Interaction Molecule 1
SELECTION OF CITATIONS
SEARCH DETAIL
...