Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 789: 147741, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34058584

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) have gained attention because of their environmental persistence and effects on ecosystems, animals, and human health. They are mutagenic, carcinogenic, and teratogenic. The review provides background knowledge about their sources, metabolism, temporal variations, and size distribution in atmospheric particulate matter. The review article briefly discusses the analytical methods suitable for the extraction, characterization, and quantification of nonpolar and polar PAHs, addressing the challenges. Herein, we discussed the molecular diagnostic ratios (DRs), stable carbon isotopic analysis (SCIA), and receptor models, with much emphasis on the positive matrix factorization (PMF) model, for apportioning PAH sources. Among which, DRs and PCA identified as the most widely employed method, but their accuracy for PAH source identification has received global criticism. Therefore, the review recommends compound-specific isotopic analysis (CSIA) and PMF as the best alternative methods to provide detailed qualitative and quantitative source analysis. The compound-specific isotopic signatures are not affected by environmental degradation and are considered promising for apportioning PAH sources. However, isotopic fractions of co-eluted compounds like polar PAHs and aliphatic hydrocarbons make the PAHs isotopic fractions interpretation difficult. The interference of unresolved complex mixtures is a limitation to the application of CSIA for PAH source apportionment. Hence, for CSIA to further support PAH source apportionment, fast and cost-effective purification techniques with no isotopic fractionation effects are highly desirable. The present review explains the concept of stable carbon isotopic analysis (SCIA) relevant to PAH source analysis, identifying the techniques suitable for sample extract purification. We demonstrate how the source apportioned PAHs can be applied in assessing the health risk of PAHs using the incremental lifetime cancer risk (ILCR) model, and in doing so, we identify the key factors that could undermine the accuracy of the ILCR and research gaps that need further investigation.


Subject(s)
Air Pollutants , Neoplasms , Polycyclic Aromatic Hydrocarbons , Air Pollutants/analysis , China , Ecosystem , Environmental Monitoring , Humans , Neoplasms/chemically induced , Neoplasms/epidemiology , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Risk Assessment
2.
Environ Sci Pollut Res Int ; 27(19): 24387-24399, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32306260

ABSTRACT

The effect of char addition on the digestion of animal by-products was evaluated as a way for enhancing the performance of the process. Two different types of carbonaceous materials were tested as carbon conductive elements to improve biological treatment. One was derived from a torrefaction process intended for increasing the energy density of lignocellulosic biomass, and the other was obtained from a hydrothermal carbonisation process. In this research, batch digestion systems of animal waste samples were evaluated at a volatile solid (VS) ratio of 1:1 inoculum-substrate (where the content of the substrate in the system was 1.69 ± 0.2 g). The system reported a baseline methane yield of 380 L CH4 kg VS-1 which increased on average to 470 L CH4 kg VS-1 following to the addition of char. The presence of char allowed a faster degradation of the lipid and protein material, reducing inhibitory interactions. The use of Fourier transformed infrared spectroscopy was applied for elucidating the predetermination of the degradation process and bring an insight into the greater degradation potential attained when carbon materials are used for enhancing microbial performance.


Subject(s)
Biofuels , Bioreactors , Anaerobiosis , Animals , Biomass , Methane
3.
Environ Sci Pollut Res Int ; 25(25): 25600-25611, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29959741

ABSTRACT

The anaerobic digestion process of swine manure was studied when char was used as supplement for improving performance. The use of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) was proposed for assessing the organic matter degradation. The assessment on biogas production was carried out using samples of swine manure (SM) supplemented with char in one case and pre-treated by microwave irradiation in the other. This experimental set-up allows for the comparison of the biological degradation observed under these two different configurations and therefore aids in understanding the effect of char particles on the process. Results showed similar performance for both systems, with an average improvement of 39% being obtained in methane production when compared to the single digestion of SM. The analysis of digestate samples by Fourier transform infrared (FTIR) spectroscopy and Py-GC/MS showed improved degradation of proteins, with the Py-GC/MS technique also capable of identifying an increase in microbial-derived material when char was added, therefore highlighting the relevant role of carbon conductive particles on biological systems. Py-GC/MS along with the use of FTIR spectroscopy has proven to be useful tools when evaluating anaerobic digestion.


Subject(s)
Charcoal/chemistry , Manure/analysis , Swine , Anaerobiosis , Animals , Biofuels/analysis , Gas Chromatography-Mass Spectrometry , Manure/microbiology , Manure/radiation effects , Methane/analysis , Microwaves , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...