Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Vaccine ; 36(36): 5470-5476, 2018 08 28.
Article in English | MEDLINE | ID: mdl-28778616

ABSTRACT

The prevention of paediatric bacterial meningitis and septicaemia has recently entered a new era with the availability of two vaccines against capsular group B meningococcus (MenB). Both of these vaccines are based on sub-capsular proteins of the meningococcus, an approach that overcomes the challenges set by the poorly immunogenic MenB polysaccharide capsule but adds complexity to predicting and measuring the impact of their use. This review describes the development and use of MenB vaccines to date, from the use of outer membrane vesicle (OMV) vaccines in MenB outbreaks around the world, to emerging evidence on the effectiveness of the newly available vaccines. While recent data from the United Kingdom supports the potential for protein-based vaccines to provide direct protection against MenB disease in immunised children, further research is required to understand the breadth and duration of this protection. A more detailed understanding of the impact of immunisation with these vaccines on nasopharyngeal carriage of the meningococcus is also required, to inform both their potential to induce herd immunity and to preferentially select for carriage of strains not susceptible to vaccine-induced antibodies. Although a full understanding of the potential impact of these vaccines will only be possible with this additional information, the availability of new tools to prevent the devastating effect of invasive MenB disease is a significant breakthrough in the fight against childhood sepsis and meningitis.


Subject(s)
Meningococcal Infections/immunology , Meningococcal Infections/prevention & control , Meningococcal Vaccines/therapeutic use , Neisseria meningitidis, Serogroup B/immunology , Neisseria meningitidis, Serogroup B/pathogenicity , Humans
2.
Clin Vaccine Immunol ; 18(12): 2038-42, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22038849

ABSTRACT

The objectives of this study were to evaluate the kinetics of antibody decline through childhood in a longitudinal study of a single cohort following serogroup C meningococcal (MenC) vaccine immunization in early childhood and to calculate the proportion of 11 to 13 year olds with protective levels of bactericidal antibody 10 years after immunization. United Kingdom children aged 11 to 13 years in 2010 who had previously taken part in a longitudinal study at the Oxford Vaccine Group had blood samples drawn between 2001 and 2010. Sera from each time point were analyzed for the MenC serum bactericidal antibody titer using a baby rabbit complement (rSBA) assay. The median age at MenC immunization was 21 months (range, 1 year 3 months to 3 years 9 months). The MenC rSBA geometric mean titer (GMT) at age 3.5 to 5 years was 8.0 (95% confidence interval, 6.5 to 9.9; n = 287). By age 11.5 to 13.5 years, the rSBA GMT had declined to 3.3 (2.5 to 4.4; n = 98). The percentage of children with rSBA titers of ≥1:8 (the threshold for protection) also declined from 38% (35% to 41%) to 15% (12% to 19%). We concluded that MenC rSBA titers wane rapidly following vaccination in early childhood and continue to decline into the second decade of life. Since nasopharyngeal colonization in adolescents probably provides the major reservoir for MenC in the population, declining immunity in this cohort is of concern. Sustaining high levels of antibody through booster vaccination in this cohort is likely necessary to avoid a resurgence of disease in the decade ahead.


Subject(s)
Antibodies, Bacterial/blood , Blood Bactericidal Activity , Meningococcal Vaccines/administration & dosage , Meningococcal Vaccines/immunology , Neisseria meningitidis, Serogroup C/immunology , Vaccination/methods , Animals , Complement System Proteins/immunology , Humans , Longitudinal Studies , Rabbits , Time Factors , United Kingdom
3.
Health Technol Assess ; 15(45): v-vi, xi-xiii, 1-128, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22257497

ABSTRACT

INTRODUCTION: Pandemic influenza A H1N1 infections occurred worldwide from 2009. Children were particularly vulnerable. Novel vaccines were used during the pandemic. OBJECTIVE: To assess the persistence of antibody to H1N1 influenza 1 year after children aged 6 months to 12 years had been immunised with two doses of either a non-adjuvanted whole-virion H1N1 influenza vaccine or an AS03B-adjuvanted split-virion H1N1 influenza vaccine; and also to assess the immunogenicity and reactogenicity in this population of a single dose of 2010-11 trivalent seasonal influenza vaccine. DESIGN: Multicentre, open-label, follow-on from randomised, head-to-head trial. SETTING: Five UK sites (Southampton, Oxford, Bristol, London and Exeter). PARTICIPANTS: Children who completed last year's head-to-head randomised study were invited to participate. Children who had subsequently received a further dose of H1N1 vaccine, or who had already received a dose of 2010-11 trivalent seasonal influenza vaccine, were excluded. INTERVENTIONS: In the previous study, children were randomised (in a 1 : 1 ratio) to receive two doses, 21 days apart, of either a non-adjuvanted whole-virion H1N1 influenza vaccine or an AS03B-adjuvanted split-virion H1N1 influenza vaccine. In this follow-on study, a blood sample was taken to assess the persistence of antibody 1 year later, followed by administration of one 0.5 ml-dose of trivalent seasonal influenza vaccine. A second blood sample was taken 3 weeks later. MAIN OUTCOME MEASURES: Comparison between vaccines of the percentage of participants with a microneutralisation (MN) titre ≥ 1 : 40 and a haemagglutination titre ≥ 1 : 32, 1 year after vaccination. Immunogenicity of the trivalent seasonal influenza vaccine was assessed 3 weeks after vaccination by both the MN and the haemagglutination inhibition (HI) titres. Reactogenicity data were recorded for 7 days after vaccination. RESULTS: A total of 323 children were enrolled and 318 were included in the analysis of the persistence of antibody. One year after receipt of whole-virion vaccine, the MN titre was ≥ 1 : 40 in 32.4% of those vaccinated when < 3 years old and in 65.9% of those vaccinated when ≥ 3 years old; the HI titre was ≥ 1 : 32 in 63.2% and 79.1% of children in the respective age groups. One year after receipt of the adjuvanted vaccine, the MN titre was ≥ 1 : 40 in 100% of those vaccinated when < 3 years old and in 96.9% of those vaccinated when ≥ 3 years old; the HI titre was ≥ 1 : 32 in 98.4% and 96.9% of children in the respective age groups. Three hundred and two children were given trivalent seasonal influenza vaccination. Three weeks later, sera were obtained from 282 children; 100% had an MN titre ≥ 1 : 40 and HI titre ≥ 1 : 32. Trivalent seasonal influenza vaccine was well tolerated, although in children < 5 years old, fever ≥ 38 °C was reported in 13.6% of those who had previously received whole-virion vaccine, and in 18.3% of those who had received adjuvanted vaccine. CONCLUSIONS: Nearly all children who received two doses of AS03B-adjuvanted split-virion pandemic H1N1 influenza vaccine had titres of antibody deemed protective (HI titre ≥ 1 : 32, MN titre ≥ 1 : 40) 1 year later. Children who received two doses of whole-virion vaccine had lower titres, although many were above the putative protective thresholds. One year after either pandemic vaccine, the 2010-11 trivalent seasonal influenza vaccine produced a marked serological response to the H1N1 component of the vaccine and was well tolerated. We propose to investigate whether or not previous receipt of monovalent influenza vaccines affected serological response to the H3N2 and B components of the 2010-11 seasonal influenza vaccine, using stored sera. TRIAL REGISTRATION: ClinicalTrials.gov NCT01239537. FUNDING: The National Institute for Health Research Health Technology Assessment programme.


Subject(s)
Child Welfare , Disease Outbreaks/prevention & control , Influenza A Virus, H1N1 Subtype , Influenza Vaccines/administration & dosage , Influenza, Human/prevention & control , Child , Child, Preschool , Confidence Intervals , Drug-Related Side Effects and Adverse Reactions , Follow-Up Studies , Humans , Infant , Influenza Vaccines/adverse effects , United Kingdom
4.
BMJ ; 340: c2649, 2010 May 27.
Article in English | MEDLINE | ID: mdl-20508026

ABSTRACT

OBJECTIVES: To compare the safety, reactogenicity, and immunogenicity of an adjuvanted split virion H1N1 vaccine and a non-adjuvanted whole virion vaccine used in the pandemic immunisation programme in the United Kingdom. DESIGN: Open label, randomised, parallel group, phase II study. SETTING: Five UK centres (Oxford, Southampton, Bristol, Exeter, and London). PARTICIPANTS: Children aged 6 months to less than 13 years for whom a parent or guardian had provided written informed consent and who were able to comply with study procedures were eligible. Those with laboratory confirmed pandemic H1N1 influenza or clinically diagnosed disease meriting antiviral treatment, allergy to egg or any other vaccine components, or coagulation defects, or who were severely immunocompromised or had recently received blood products were excluded. Children were grouped by age: 6 months-<3 years (younger group) and 3-<13 years (older group). Recruitment was by media advertising and direct mailing. Recruitment visits were attended by 949 participants, of whom 943 were enrolled and 937 included in the per protocol analysis. INTERVENTIONS: Participants were randomised 1:1 to receive AS03(B) (tocopherol based oil in water emulsion) adjuvanted split virion vaccine derived from egg culture or non-adjuvanted whole virion vaccine derived from cell culture. Both were given as two doses 21 days apart. Reactogenicity data were collected for one week after immunisation by diary card. Serum samples were collected at baseline and after the second dose. MAIN OUTCOME MEASURES: Primary reactogenicity end points were frequency and severity of fever, tenderness, swelling, and erythema after vaccination. Immunogenicity was measured by microneutralisation and haemagglutination inhibition assays. The primary immunogenicity objective was a comparison between vaccines of the percentage of participants showing seroconversion by the microneutralisation assay (fourfold rise to a titre of >or=1:40 from before vaccination to three weeks after the second dose). RESULTS: Seroconversion rates were higher after the adjuvanted split virion vaccine than after the whole virion vaccine, most notably in the youngest children (163 of 166 participants with paired serum samples (98.2%, 95% confidence interval 94.8% to 99.6%) v 157 of 196 (80.1%, 73.8% to 85.5%), P<0.001) in children under 3 years and 226 of 228 (99.1%, 96.9% to 99.9%) v 95.9%, 92.4% to 98.1%, P=0.03) in those over 3 years). The adjuvanted split virion vaccine was more reactogenic than the whole virion vaccine, with more frequent systemic reactions and severe local reactions in children aged over 5 years after dose one (13 (7.2%, 3.9% to 12%) v 2 (1.1%, 0.1% to 3.9%), P<0.001) and dose two (15 (8.5%, 4.8% to 13.7%) v 2 (1.1%, 0.1% to 4.1%), P<0.002) and after dose two in those under 5 years (15 (5.9%, 3.3% to 9.6%) v 0 (0.0%, 0% to 1.4%), P<0.001). Dose two of the adjuvanted split virion vaccine was more reactogenic than dose one, especially for fever >or=38 masculineC in those aged under 5 (24 (8.9%, 5.8% to 12.9%) v 57 (22.4%, 17.5% to 28.1%), P<0.001). CONCLUSIONS: In this first direct comparison of an AS03(B) adjuvanted split virion versus whole virion non-adjuvanted H1N1 vaccine, the adjuvanted vaccine, while more reactogenic, was more immunogenic and, importantly, achieved high seroconversion rates in children aged less than 3 years. This indicates the potential for improved immunogenicity of influenza vaccines in this age group. TRIAL REGISTRATION: Clinical trials.gov NCT00980850; ISRCTN89141709.


Subject(s)
Adjuvants, Immunologic/adverse effects , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/adverse effects , Influenza, Human/prevention & control , Virion/immunology , Adolescent , Child , Child, Preschool , Drug Combinations , Female , Hemagglutination Inhibition Tests , Humans , Infant , Influenza Vaccines/immunology , Male , Polysorbates/adverse effects , Squalene/adverse effects , Squalene/immunology , alpha-Tocopherol/adverse effects , alpha-Tocopherol/immunology
5.
BMJ ; 336(7659): 1487-91, 2008 Jun 28.
Article in English | MEDLINE | ID: mdl-18535032

ABSTRACT

OBJECTIVE: To determine the persistence of bactericidal antibody titres following immunisation with serogroup C meningococcal glycoconjugate vaccine at age 6-15 years in order to examine changes in persistence of antibodies with age. DESIGN: Observational study. SETTING: Secondary and tertiary educational institutions in the United Kingdom. PARTICIPANTS: Healthy adolescents aged 11-20 years previously immunised between 6 and 15 years of age with one of the three serogroup C meningococcal vaccines. INTERVENTION: Serum obtained by venepuncture. MAIN OUTCOME MEASURES: Percentage of participants with (rabbit complement) serum bactericidal antibody titres of at least 1:8; geometric mean titres of serogroup C meningococcal serum bactericidal antibody. RESULTS: Five years after immunisation, 84.1% (95% confidence interval 81.6% to 86.3%) of 987 participants had a bactericidal antibody titre of at least 1:8. Geometric mean titres of bactericidal antibody were significantly lower in 11-13 year olds (147, 95% confidence interval 115 to 188) than in 14-16 year olds (300, 237 to 380) and 17-20 year olds (360, 252 to 515) (P<0.0001 for both comparisons). Within these age bands, no significant difference in geometric mean titres of bactericidal antibody between recipients of the different serogroup C meningococcal vaccines was seen. More than 70% of participants had received a vaccine from one manufacturer; in this cohort, geometric mean titres were higher in those immunised at aged 10 years or above than in those immunised before the age of 10. CONCLUSIONS: Higher concentrations of bactericidal antibody are seen five years after immunisation with serogroup C meningococcal vaccine at age 10 years or above than in younger age groups, possibly owing to immunological maturation. This provides support for adolescent immunisation programmes to generate sustained protection against serogroup C meningococcal disease not only for the vaccine recipients but also, through the maintenance of herd immunity, for younger children.


Subject(s)
Antibodies, Bacterial/blood , Meningitis, Meningococcal/prevention & control , Meningococcal Vaccines/immunology , Neisseria meningitidis, Serogroup C/immunology , Adolescent , Adult , Age Distribution , Biomarkers/blood , Child , Female , Humans , Male , Meningitis, Meningococcal/immunology , Regression Analysis , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...