Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 112022 08 22.
Article in English | MEDLINE | ID: mdl-35993549

ABSTRACT

Repeated exposure to drugs of abuse results in an upregulation of cAMP signaling in the mesolimbic dopamine system, a molecular adaptation thought to be critically involved in the development of drug dependence. Exchange protein directly activated by cAMP (Epac2) is a major cAMP effector abundantly expressed in the brain. However, it remains unknown whether Epac2 contributes to cocaine reinforcement. Here, we report that Epac2 in the mesolimbic dopamine system promotes cocaine reinforcement via enhancement of dopamine release. Conditional knockout of Epac2 from midbrain dopamine neurons (Epac2-cKO) and the selective Epac2 inhibitor ESI-05 decreased cocaine self-administration in mice under both fixed-ratio and progressive-ratio reinforcement schedules and across a broad range of cocaine doses. In addition, Epac2-cKO led to reduced evoked dopamine release, whereas Epac2 agonism robustly enhanced dopamine release in the nucleus accumbens in vitro. This mechanism is central to the behavioral effects of Epac2 disruption, as chemogenetic stimulation of ventral tegmental area (VTA) dopamine neurons via deschloroclozapine (DCZ)-induced activation of Gs-DREADD increased dopamine release and reversed the impairment of cocaine self-administration in Epac2-cKO mice. Conversely, chemogenetic inhibition of VTA dopamine neurons with Gi-DREADD reduced dopamine release and cocaine self-administration in wild-type mice. Epac2-mediated enhancement of dopamine release may therefore represent a novel and powerful mechanism that contributes to cocaine reinforcement.


Subject(s)
Cocaine , Animals , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Mesencephalon/metabolism , Mice , Ventral Tegmental Area/physiology
2.
Mol Psychiatry ; 27(1): 640-651, 2022 01.
Article in English | MEDLINE | ID: mdl-34145393

ABSTRACT

The neurobiology of addiction has been an intense topic of investigation for more than 50 years. Over this time, technological innovation in methods for studying brain function rapidly progressed, leading to increasingly sophisticated experimental approaches. To understand how specific brain regions, cell types, and circuits are affected by drugs of abuse and drive behaviors characteristic of addiction, it is necessary both to observe and manipulate neural activity in addiction-related behavioral paradigms. In pursuit of this goal, there have been several key technological advancements in in vivo imaging and neural circuit modulation in recent years, which have shed light on the cellular and circuit mechanisms of addiction. Here we discuss some of these key technologies, including circuit modulation with optogenetics, in vivo imaging with miniaturized single-photon microscopy (miniscope) and fiber photometry, and how the application of these technologies has garnered novel insights into the neurobiology of addiction.


Subject(s)
Neurobiology , Optogenetics , Brain , Optogenetics/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...