Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Biotechnol Bioeng ; 75(3): 322-33, 2001 Nov 05.
Article in English | MEDLINE | ID: mdl-11590605

ABSTRACT

The enzymatic hydrolysis of mannan-based hemicelluloses is technologically important for applications ranging from pulp and paper processing to food processing to gas and oil well stimulation. In many cases, thermostability and activity at elevated temperatures can be advantageous. To this end, the genes encoding beta-mannosidase (man2) and beta-mannanase (man5) from the hyperthermophilic bacteria Thermotoga neapolitana 5068 and Thermotoga maritima were isolated, cloned, and expressed in Escherichia coli. The amino acid sequences for the mannosidases from these organisms were 77% identical and corresponded to proteins with an M(r) of approximately 92 kDa. The translated nucleotide sequences for the beta-mannanase genes (man5) encoded polypeptides with an M(r) of 76 kDa that exhibited 84% amino acid sequence identity. The recombinant versions of Man2 and Man5 had similar respective biochemical and biophysical properties, which were also comparable to those determined for the native versions of these enzymes in T. neapolitana. The optimal temperature and pH for the recombinant Man2 and Man5 from both organisms were approximately 90 degrees C and 7.0, respectively. The presence of Man2 and Man5 in these two Thermotoga species indicates that galactomannan is a potential growth substrate. This was supported by the fact that beta-mannanase and beta-mannosidase activities were significantly stimulated when T. neapolitana was grown on guar or carob galactomannan. Maximum cell densities increased by at least tenfold when either guar or carob galactomannan was added to the growth medium. For T. neapolitana grown on guar at 83 degrees C, Man5 was secreted into the culture media, whereas Man2 was intracellular. These localizations were consistent with the presence and lack of signal peptides for Man5 and Man2, respectively. The identification of the galactomannan-degrading enzymes in these Thermotoga species adds to the list of biotechnologically important hemicellulases produced by members of this hyperthermophilic genera.


Subject(s)
Bacteria/enzymology , Bacterial Proteins , Mannans/metabolism , Mannosidases/chemistry , beta-Mannosidase , Amino Acid Sequence , Bacteria/genetics , Bacteria/growth & development , Galactose/analogs & derivatives , Mannosidases/genetics , Mannosidases/metabolism , Microscopy, Electron , Molecular Sequence Data , Sequence Homology, Amino Acid
6.
J Bacteriol ; 181(1): 284-90, 1999 Jan.
Article in English | MEDLINE | ID: mdl-9864341

ABSTRACT

The eglA gene, encoding a thermostable endoglucanase from the hyperthermophilic archaeon Pyrococcus furiosus, was cloned and expressed in Escherichia coli. The nucleotide sequence of the gene predicts a 319-amino-acid protein with a calculated molecular mass of 35.9 kDa. The endoglucanase has a 19-amino-acid signal peptide but not cellulose-binding domain. The P. furiosus endoglucanase has significant amino acid sequence similarities, including the conserved catalytic nucleophile and proton donor, with endoglucanases from glucosyl hydrolase family 12. The purified recombinant enzyme hydrolyzed beta-1,4 but not beta-1,3 glucosidic linkages and had the highest specific activity on cellopentaose (degree of polymerization [DP] = 5) and cellohexaose (DP = 6) oligosaccharides. To a lesser extent, EglA also hydrolyzed shorter cellodextrins (DP < 5) as well as the amorphous portions of polysaccharides which contain only beta-1,4 bonds such as carboxymethyl cellulose, microcrystalline cellulose, Whatman paper, and cotton linter. The highest specific activity toward polysaccharides occurred with mixed-linkage beta-glucans such as barley beta-glucan and lichenan. Kinetics studies with cellooliogsaccharides and p-nitrophenyl-cellooligosaccharides indicated that the enzyme had three glucose binding subsites (-I, -II, and -III) for the nonreducing end and two glucose binding subsites (+I and +II) for the reducing end from the scissile glycosidic linkage. The enzyme had temperature and pH optima of 100 degreesC and 6.0, respectively; a half-life of 40 h at 95 degreesC; and a denaturing temperature of 112 degreesC as determined by differential scanning calorimetry. The discovery of a thermostable enzyme with this substrate specificity has implications for both the evolution of enzymes involved in polysaccharide hydrolysis and the occurrence of growth substrates in hydrothermal vent environments.


Subject(s)
Cellulase/metabolism , Pyrococcus furiosus/enzymology , Amino Acid Sequence , Base Sequence , Cellulase/genetics , Cellulose/chemistry , Cellulose/metabolism , Chromosome Mapping , DNA Primers/genetics , DNA, Archaeal/genetics , Evolution, Molecular , Glucans/chemistry , Glucans/metabolism , Hydrogen-Ion Concentration , Hydrolysis , Kinetics , Molecular Sequence Data , Pyrococcus furiosus/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity , Temperature
8.
Nature ; 392(6674): 353-8, 1998 Mar 26.
Article in English | MEDLINE | ID: mdl-9537320

ABSTRACT

Aquifex aeolicus was one of the earliest diverging, and is one of the most thermophilic, bacteria known. It can grow on hydrogen, oxygen, carbon dioxide, and mineral salts. The complex metabolic machinery needed for A. aeolicus to function as a chemolithoautotroph (an organism which uses an inorganic carbon source for biosynthesis and an inorganic chemical energy source) is encoded within a genome that is only one-third the size of the E. coli genome. Metabolic flexibility seems to be reduced as a result of the limited genome size. The use of oxygen (albeit at very low concentrations) as an electron acceptor is allowed by the presence of a complex respiratory apparatus. Although this organism grows at 95 degrees C, the extreme thermal limit of the Bacteria, only a few specific indications of thermophily are apparent from the genome. Here we describe the complete genome sequence of 1,551,335 base pairs of this evolutionarily and physiologically interesting organism.


Subject(s)
Genome, Bacterial , Gram-Negative Aerobic Rods and Cocci/genetics , Chromosome Mapping , Chromosomes, Bacterial , Citric Acid Cycle , DNA Repair , DNA, Bacterial/biosynthesis , DNA, Bacterial/genetics , Gram-Negative Aerobic Rods and Cocci/metabolism , Molecular Sequence Data , Oxidative Stress , Phylogeny , Protein Biosynthesis , Temperature , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...