Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 13(44): 51809-51828, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34310110

ABSTRACT

Professor Chia-Kuang (Frank) Tsung made his scientific impact primarily through the atomic-level design of nanoscale materials for application in heterogeneous catalysis. He approached this challenge from two directions: above and below the material surface. Below the surface, Prof. Tsung synthesized finely controlled nanoparticles, primarily of noble metals and metal oxides, tailoring their composition and surface structure for efficient catalysis. Above the surface, he was among the first to leverage the tunability and stability of metal-organic frameworks (MOFs) to improve heterogeneous, molecular, and biocatalysts. This article, written by his former students, seeks first to commemorate Prof. Tsung's scientific accomplishments in three parts: (1) rationally designing nanocrystal surfaces to promote catalytic activity; (2) encapsulating nanocrystals in MOFs to improve catalyst selectivity; and (3) tuning the host-guest interaction between MOFs and guest molecules to inhibit catalyst degradation. The subsequent discussion focuses on building on the foundation laid by Prof. Tsung and on his considerable influence on his former group members and collaborators, both inside and outside of the lab.

2.
ACS Appl Mater Interfaces ; 13(44): 51839-51848, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-33845573

ABSTRACT

The global ammonia yield is critical to the fertilizer industry as the global food demand is highly dependent on it, whereas, NH3 is also a key chemical for pharmaceutical, textile, plastic, explosive, and dye-making industries. At present, the demand for NH3 is fulfilled by the Haber-Bosch method, which consumes 1-3% of global energy and causes 0.5-1% CO2 emission every year. To reduce emissions and improve energy efficiency, the electrochemical nitrogen gas reduction reaction (N2RR) has received much attention and support after the funding announcement by the U.S. Department of Energy. In this work, we have created hollow CuAu nanoboxes with Cu-rich inner walls to improve the NH3 Faradaic efficiency in N2RR. These beveled nanoboxes are produced in different degrees of corner and edge etching, which produces both polyhedral and concave structures. In N2RR, the binary CuAu nanoboxes enhanced NH3 production compared to individual Au and Cu nanocubes. The results of DFT calculations suggest the Cu-rich inner walls in the hollow beveled CuAu nanoboxes play a major role in their performance by reducing the free energy ΔG*NNH for the potential-determining step to form *NNH (* + N2(g) + H+ + e- → *NNH). Meanwhile, the results in 10-cycle and solar-illuminated N2RR indicate the beveled CuAu nanoboxes are not only robust electrocatalysts but show promise in photocatalysis as well.

3.
Nanoscale ; 12(16): 8687-8692, 2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32267279

ABSTRACT

We investigated lattice strain on alloyed surfaces using ∼10 nm core-shell nanoparticles with controlled size, shape, and composition. We developed a wet-chemistry method for synthesizing small octahedral PdPt alloy nanoparticles and Au@PdPt core-shell nanoparticles with Pd-Pt alloy shells and Au cores. Upon introduction of the Au core, the size and shape of the overall nanostructure and the composition of the alloyed PdPt were maintained, enabling the use of the electrooxidation of formic acid as a probe to compare the surface structures with different lattice strain. We have found that the structure of the alloyed surface is indeed impacted by the lattice strain generated by the Au core. To further reveal the impact of lattice strain, we fine-tuned the shell thickness. Then, we used synchrotron-based X-ray diffraction to investigate the degree of lattice strain and compared the observations with the results of the formic acid electrooxidation, suggesting that there is an optimal intermediate shell thickness for high catalytic activity.

4.
Langmuir ; 34(45): 13697-13704, 2018 11 13.
Article in English | MEDLINE | ID: mdl-30343577

ABSTRACT

The combined functionality of components in organic-inorganic hybrid nanomaterials render them efficient nanoreactors. However, the development in this field is limited due to a lack of synthetic avenues and systematic control of the growth kinetics of hybrid structures. In this work, we take advantage of an ionic switch for regio-control of Au-BINOL(1,1'-Bi-2-naphthol) hybrid nanostructures. Aromatic BINOL molecules assemble into nanospheres, concomitant with the growth of the Au nanocrystals. The morphological evolution of Au nanocrystals is solely controlled by the presence of halides in the synthetic system. Here we show that quaternary ammonium surfactants (CTAB or CTAC), not only bridging Au and BINOL, but also contributing to the formation of concentric or eccentric structures when their concentrations are tuned to the range of 10-5 to 10-3 M. This facile strategy offers the potential advantage of scalable production, with diverse functional organic-inorganic hybrid nanocomposites being produced based on the specific archetype of Au-BINOL hybrid nanocomposites.

5.
ACS Appl Mater Interfaces ; 10(27): 23187-23197, 2018 Jul 11.
Article in English | MEDLINE | ID: mdl-29912544

ABSTRACT

The distribution of tantalum and oxygen ions in electroformed and/or switched TaO x-based resistive switching devices has been assessed by high-angle annular dark-field microscopy, X-ray energy-dispersive spectroscopy, and electron energy-loss spectroscopy. The experiments have been performed in the plan-view geometry on the cross-bar devices producing elemental distribution maps in the direction perpendicular to the electric field. The maps revealed an accumulation of +20% Ta in the inner part of the filament with a 3.5% Ta-depleted ring around it. The diameter of the entire structure was approximately 100 nm. The distribution of oxygen was uniform with changes, if any, below the detection limit of 5%. We interpret the elemental segregation as due to diffusion driven by the temperature gradient, which in turn is induced by the spontaneous current constriction associated with the negative differential resistance-type I- V characteristics of the as-fabricated metal/oxide/metal structures. A finite-element model was used to evaluate the distribution of temperature in the devices and correlated with the elemental maps. In addition, a fine-scale (∼5 nm) intensity contrast was observed within the filament and interpreted as due phase separation of the functional oxide in the two-phase composition region. Understanding the temperature-gradient-induced phenomena is central to the engineering of oxide memory cells.

6.
Science ; 357(6350): 479-484, 2017 08 04.
Article in English | MEDLINE | ID: mdl-28774924

ABSTRACT

Platinum group metal-free (PGM-free) metal-nitrogen-carbon catalysts have emerged as a promising alternative to their costly platinum (Pt)-based counterparts in polymer electrolyte fuel cells (PEFCs) but still face some major challenges, including (i) the identification of the most relevant catalytic site for the oxygen reduction reaction (ORR) and (ii) demonstration of competitive PEFC performance under automotive-application conditions in the hydrogen (H2)-air fuel cell. Herein, we demonstrate H2-air performance gains achieved with an iron-nitrogen-carbon catalyst synthesized with two nitrogen precursors that developed hierarchical porosity. Current densities recorded in the kinetic region of cathode operation, at fuel cell voltages greater than ~0.75 V, were the same as those obtained with a Pt cathode at a loading of 0.1 milligram of Pt per centimeter squared. The proposed catalytic active site, carbon-embedded nitrogen-coordinated iron (FeN4), was directly visualized with aberration-corrected scanning transmission electron microscopy, and the contributions of these active sites associated with specific lattice-level carbon structures were explored computationally.

7.
J Am Chem Soc ; 139(34): 11678-11681, 2017 08 30.
Article in English | MEDLINE | ID: mdl-28787139

ABSTRACT

Platinum-based alloys are known to demonstrate advanced properties in electrochemical reactions that are relevant for proton exchange membrane fuel cells and electrolyzers. Further development of Pt alloy electrocatalysts relies on the design of architectures with highly active surfaces and optimized utilization of the expensive element, Pt. Here, we show that the three-dimensional Pt anisotropy of Pt-Ni rhombic dodecahedra can be tuned by controlling the ratio between Pt and Ni precursors such that either a completely hollow nanoframe or a new architecture, the excavated nanoframe, can be obtained. The excavated nanoframe showed ∼10 times higher specific and ∼6 times higher mass activity for the oxygen reduction reaction than Pt/C, and twice the mass activity of the hollow nanoframe. The high activity is attributed to enhanced Ni content in the near-surface region and the extended two-dimensional sheet structure within the nanoframe that minimizes the number of buried Pt sites.

8.
ACS Appl Mater Interfaces ; 9(35): 29839-29848, 2017 Sep 06.
Article in English | MEDLINE | ID: mdl-28809471

ABSTRACT

Understanding the mechanisms associated with Pt/C electrocatalyst degradation in proton exchange membrane fuel cell (PEMFC) cathodes is critical for the future development of higher-performing materials; however, there is a lack of information regarding Pt coarsening under PEMFC operating conditions within the cathode catalyst layer. We report a direct and quantitative 3D study of Pt dispersions on carbon supports (high surface area carbon (HSAC), Vulcan XC-72, and graphitized carbon) with varied surface areas, graphitic character, and Pt loadings ranging from 5 to 40 wt %. This is accomplished both before and after catalyst-cycling accelerated stress tests (ASTs) through observations of the cathode catalyst layer of membrane electrode assemblies. Electron tomography results show Pt nanoparticle agglomeration occurs predominantly at junctions and edges of aggregated graphitized carbon particles, leading to poor Pt dispersion in the as-prepared catalysts and increased coalescence during ASTs. Tomographic reconstructions of Pt/HSAC show much better initial Pt dispersions, less agglomeration, and less coarsening during ASTs in the cathode. However, a large loss of the electrochemically active surface area (ECSA) is still observed and is attributed to accelerated Pt dissolution and nanoparticle coalescence. Furthermore, a strong correlation between Pt particle/agglomerate size and measured ECSA is established and is proposed as a more useful metric than average crystallite size in predicting degradation behavior across different catalyst systems.

9.
Microsc Microanal ; 22(6): 1251-1260, 2016 12.
Article in English | MEDLINE | ID: mdl-27998366

ABSTRACT

Alnico alloys have long been used as strong permanent magnets because of their ferromagnetism and high coercivity. Understanding their structural details allows for better prediction of the resulting magnetic properties. However, quantitative three-dimensional characterization of the phase separation in these alloys is still challenged by the spatial quantification of nanoscale phases. Herein, we apply a dual tomography approach, where correlative scanning transmission electron microscopy (STEM) energy-dispersive X-ray spectroscopic (EDS) tomography and atom probe tomography (APT) are used to investigate the initial phase separation process of an alnico 8 alloy upon non-magnetic annealing. STEM-EDS tomography provides information on the morphology and volume fractions of Fe-Co-rich and Νi-Al-rich phases after spinodal decomposition in addition to quantitative information of the composition of a nanoscale volume. Subsequent analysis of a portion of the same specimen by APT offers quantitative chemical information of each phase at the sub-nanometer scale. Furthermore, APT reveals small, 2-4 nm Fe-rich α 1 phases that are nucleated in the Ni-rich α 2 matrix. From this information, we show that phase separation of the alnico 8 alloy consists of both spinodal decomposition and nucleation and growth processes. The complementary benefits and challenges associated with correlative STEM-EDS and APT are discussed.

10.
Nano Lett ; 16(9): 5514-20, 2016 09 14.
Article in English | MEDLINE | ID: mdl-27575057

ABSTRACT

Au-Pd nanocrystals are an intriguing system to study the integrated functions of localized surface plasmon resonance (LSPR) and heterogeneous catalysis. Gold is both durable and can harness incident light energy to enhance the catalytic activity of another metal, such as Pd, via the SPR effect in bimetallic nanocrystals. Despite the superior catalytic performance of icosahedral (IH) nanocrystals compared to alternate morphologies, the controlled synthesis of alloy and core-shell IH is still greatly challenged by the disparate reduction rates of metal precursors and lack of continuous epigrowth on multiply twinned boundaries of such surfaces. Herein, we demonstrate a one-step strategy for the controlled growth of monodisperse Au-Pd alloy and core-shell IH with terraced shells by turning an ionic switch between [Br(-)]/[Cl(-)] in the coreduction process. The core-shell IH nanocrystals contain AuPd alloy cores and ultrathin Pd shells (<2 nm). They not only display more than double the activity of the commercial Pd catalysts in ethanol electrooxidation attributed to monatomic step terraces but also show SPR-enhanced conversion of 4-nitrophenol. This strategy holds promise toward the development of alternate bimetallic IH nanocrystals for electrochemical and plasmon-enhanced catalysis.

11.
Small ; 11(41): 5551-5, 2015 Nov 04.
Article in English | MEDLINE | ID: mdl-26344934

ABSTRACT

Fracture-free and conformal Pd-UiO-66@ZIF-8 core-shell metal-organic framework material is synthesized by a surfactant-mediated method. The hierarchical nanoporous material exhibits great size-selective hydrogenation catalysis and demonstrates potentials for many different applications.

12.
Nanoscale ; 7(29): 12248-65, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26147486

ABSTRACT

The focus on surface lattice strain in nanostructures as a fundamental research topic has gained momentum in recent years as scientists investigated its significant impact on the surface electronic structure and catalytic properties of nanomaterials. Researchers have begun to tell a more complete story of catalysis from a perspective which brings this concept to the forefront of the discussion. The nano-'realm' makes the effects of surface lattice strain, which acts on the same spatial scales, more pronounced due to a higher ratio of surface to bulk atoms. This is especially evident in the field of metal nanoparticle catalysis, where displacement of atoms on surfaces can significantly alter the sorption properties of molecules. In part, the concept of strain-engineering for catalysis opened up due to the achievements that were made in the synthesis of a more sophisticated nanoparticle library from an ever-expanding set of methodologies. Developing synthesis methods for metal nanoparticles with well-defined and strained architectures is a worthy goal that, if reached, will have considerable impact in the search for catalysts. In this review, we summarize the recent accomplishments in the area of surface lattice-strained metal nanoparticle synthesis, framing the discussion from the important perspective of surface lattice strain effects in catalysis.

13.
ACS Nano ; 8(7): 7239-50, 2014 Jul 22.
Article in English | MEDLINE | ID: mdl-24896733

ABSTRACT

Shape-controlled metal nanoparticles (NPs) interfacing Pt and nonprecious metals (M) are highly active energy conversion electrocatalysts; however, there are still few routes to shaped M-Pt core-shell NPs and fewer studies on the geometric effects of shape and strain on catalysis by such structures. Here, well-defined cubic multilayered Pd-Ni-Pt sandwich NPs are synthesized as a model platform to study the effects of the nonprecious metal below the shaped Pt surface. The combination of shaped Pd substrates and mild reduction conditions directs the Ni and Pt overgrowth in an oriented, layer-by-layer fashion. Exposing a majority of Pt(100) facets, the catalytic performance in formic acid and methanol electro-oxidations (FOR and MOR) is assessed for two different Ni layer thicknesses and two different particle sizes of the ternary sandwich NPs. The strain imparted to the Pt shell layer by the introduction of the Ni sandwich layer (Ni-Pt lattice mismatch of ∼11%) results in higher specific initial activities compared to core-shell Pd-Pt bimetallic NPs in alkaline MOR. The trends in activity are the same for FOR and MOR electrocatalysis in acidic electrolyte. However, restructuring in acidic conditions suggests a more complex catalytic behavior from changes in composition. Notably, we also show that cubic quaternary Au-Pd-Ni-Pt multishelled NPs, and Pd-Ni-Pt nanooctahedra can be generated by the method, the latter of which hold promise as potentially highly active oxygen reduction catalysts.

14.
ChemSusChem ; 6(10): 1993-2000, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24106237

ABSTRACT

The effect of lattice strain on the catalytic properties of Pd nanoparticles is systematically studied. Synthetic strategies for the preparation of a series of shape-controlled Pd nanocrystals with lattice strain generated from different sources has been developed. All of these nanocrystals were created with the same capping agent under similar reaction conditions. First, a series of Pd nanoparticles was synthesized that were enclosed in {111} surfaces: Single-crystalline Pd octahedra, single-crystalline AuPd core-shell octahedra, and twinned Pd icosahedra. Next, various {100}-terminated particles were synthesized: Single-crystalline Pd cubes and single-crystalline AuPd core-shell cubes. Different extents of lattice strain were evident by comparing the X-ray diffraction patterns of these particles. During electrocatalysis, decreased potentials for CO stripping and increased current densities for formic-acid oxidation were observed for the strained nanoparticles. In the gas-phase hydrogenation of ethylene, the activities of the strained nanoparticles were lower than those of the single-crystalline Pd nanoparticles, perhaps owing to a larger amount of cetyl trimethylammonium bromide on the surface.


Subject(s)
Metal Nanoparticles/chemistry , Palladium/chemistry , Carbon Monoxide/chemistry , Catalysis , Ethylenes/chemistry , Formates/chemistry , Hydrogenation , Oxidation-Reduction
15.
J Am Chem Soc ; 135(39): 14691-700, 2013 Oct 02.
Article in English | MEDLINE | ID: mdl-24060505

ABSTRACT

Developing syntheses of more sophisticated nanostructures comprising late transition metals broadens the tools to rationally design suitable heterogeneous catalysts for chemical transformations. Herein, we report a synthesis of Pd-Rh nanoboxes by controlling the migration of metals in a core-shell nanoparticle. The Pd-Rh nanobox structure is a grid-like arrangement of two distinct metal phases, and the surfaces of these boxes are {100} dominant Pd and Rh. The catalytic behaviors of the particles were examined in electrochemistry to investigate strain effects arising from this structure. It was found that the trends in activity of model fuel cell reactions cannot be explained solely by the surface composition. The lattice strain emerging from the nanoscale separation of metal phases at the surface also plays an important role.

16.
J Am Chem Soc ; 134(44): 18417-26, 2012 Nov 07.
Article in English | MEDLINE | ID: mdl-23035986

ABSTRACT

Metal nanocrystals (NCs) comprising rhodium are heterogeneous catalysts for CO oxidation, NO reduction, hydrogenations, electro-oxidations, and hydroformylation reactions. It has been demonstrated that control of structure at the nanoscale can enhance the performance of a heterogeneous metal catalyst, such as Rh, but molecular-level control of NCs comprising this metal is less studied compared to gold, silver, platinum, and palladium. We report an iodide-mediated epitaxial overgrowth of Rh by using the surfaces of well-defined foreign metal crystals as substrates to direct the Rh surface structures. The epigrowth can be accomplished on different sizes, morphologies, and identities of metal substrates. The surface structures of the resulting bimetallic NCs were studied using electron microscopy, and their distinct catalytic behaviors were examined in CO stripping and the electro-oxidation of formic acid. Iodide was found to play a crucial role in the overgrowth mechanism. With the addition of iodide, the Rh epigrowth can even be achieved on gold substrates despite the rather large lattice mismatch of ~7%. Hollow Rh nanostructures have also been generated by selective etching of the core substrates. The new role of iodide in the overgrowth and the high level of control for Rh could hold the key to future nanoscale control of this important metal's architecture for use in heterogeneous catalysis.

17.
J Am Chem Soc ; 134(35): 14345-8, 2012 Sep 05.
Article in English | MEDLINE | ID: mdl-22901021

ABSTRACT

A general synthetic strategy for yolk-shell nanocrystal@ZIF-8 nanostructures has been developed. The yolk-shell nanostructures possess the functions of nanoparticle cores, microporous shells, and a cavity in between, which offer great potential in heterogeneous catalysis. The synthetic strategy involved first coating the nanocrystal cores with a layer of Cu(2)O as the sacrificial template and then a layer of polycrystalline ZIF-8. The clean Cu(2)O surface assists in the formation of the ZIF-8 coating layer and is etched off spontaneously and simultaneously during this process. The yolk-shell nanostructures were characterized by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, and nitrogen adsorption. To study the catalytic behavior, hydrogenations of ethylene, cyclohexene, and cyclooctene as model reactions were carried out over the Pd@ZIF-8 catalysts. The microporous ZIF-8 shell provides excellent molecular-size selectivity. The results show high activity for the ethylene and cyclohexene hydrogenations but not in the cyclooctene hydrogenation. Different activation energies for cyclohexene hydrogenation were obtained for nanostructures with and without the cavity in between the core and the shell. This demonstrates the importance of controlling the cavity because of its influence on the catalysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...