Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Metab Dispos ; 30(7): 823-30, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12065441

ABSTRACT

Accelerator mass spectrometry (AMS) has been used in a human mass balance and metabolism study to analyze samples taken from four healthy male adult subjects administered nanoCurie doses of the farnesyl transferase inhibitor 14C-labeled (R)-6-[amino(4-chlorophenyl)(1-methyl-1H-imidazol-5-yl)methyl]-4-(3-chlorophenyl)-1-methyl-2(1H)-quinolinone ([14C]R115777). Plasma, urine, and feces samples were collected at fixed timepoints after oral administration of 50 mg [14C]R115777 (25.4 Bq/mg or 687 pCi/mg i.e., equivalent to 76.257 x 10(3) dpm) per subject. AMS analysis showed that drug-related (14)C was present in the plasma samples with C(max) values ranging from 1.6055 to 2.9074 dpm/ml (1.0525-1.9047 microg/ml) at t(max) = 2 to 3 h. The C(max) values for acetonitrile extracts of plasma samples ranged from 0.3724 to 0.7490 dpm/ml in the four male subjects. Drug-related 14C was eliminated from the body both in the urine and the feces, with a mean total recovery of 79.8 +/- 12.9% in the feces and 13.7 +/- 6.2% in the urine. The majority of drug-related radioactivity in urine and feces was excreted within the first 48 h. High-performance liquid chromatography (HPLC)-AMS profiles were generated from radioactive parent drug plus metabolites from pooled diluted urine, plasma, and methanolic feces extracts and matched to retention times of synthetic reference substances, postulated as metabolites. All HPLC separations used no more than 5 dpm injected on-column. The radioactive metabolite profiles obtained compared well with those obtained using liquid chromatography/tandem mass spectometry. This study demonstrates the use of AMS in a human phase I study in which the administered radioactive dose was at least 1000-fold lower than that used for conventional radioactive studies.


Subject(s)
Alkyl and Aryl Transferases/antagonists & inhibitors , Enzyme Inhibitors/analysis , Enzyme Inhibitors/pharmacokinetics , Quinolones/analysis , Quinolones/pharmacokinetics , Adult , Chromatography, High Pressure Liquid/methods , Enzyme Inhibitors/chemistry , Farnesyltranstransferase , Humans , Male , Mass Spectrometry/methods , Particle Accelerators/instrumentation , Quinolones/chemistry
2.
Drug Metab Dispos ; 30(5): 553-63, 2002 May.
Article in English | MEDLINE | ID: mdl-11950787

ABSTRACT

Galantamine is a competitive acetylcholine esterase inhibitor with a beneficial therapeutic effect in patients with Alzheimer's disease. The metabolism and excretion of orally administered (3)H-labeled galantamine was investigated in rats and dogs at a dose of 2.5 mg base-Eq/kg body weight and in humans at a dose of 4 mg base-Eq. Both poor and extensive metabolizers of CYP2D6 were included in the human study. Urine, feces, and plasma samples were collected for up to 96 h (rats) or 168 h (dogs and humans) after dosing. The radioactivity of the samples and the concentrations of galantamine and its major metabolites were analyzed. In all species, galantamine and its metabolites were predominantly excreted in the urine (from 60% in male rats to 93% in humans). Excretion of radioactivity was rapid and nearly complete at 96 h after dosing in all species. Major metabolic pathways were glucuronidation, O-demethylation, N-demethylation, N-oxidation, and epimerization. All metabolic pathways observed in humans occurred in at least one animal species. In extensive metabolizers for CYP2D6, urinary metabolites resulting from O-demethylation represented 33.2% of the dose compared with 5.2% in poor metabolizers, which showed correspondingly higher urinary excretion of unchanged galantamine and its N-oxide. The glucuronide of O-desmethyl-galantamine represented up to 19% of the plasma radioactivity in extensive metabolizers but could not be detected in poor metabolizers. Nonvolatile radioactivity and unchanged galantamine plasma kinetics were similar for poor and extensive metabolizers. Genetic polymorphism in the expression of CYP2D6 is not expected to affect the pharmacodynamics of galantamine.


Subject(s)
Cholinesterase Inhibitors/metabolism , Galantamine/metabolism , Animals , Cholinesterase Inhibitors/blood , Cholinesterase Inhibitors/urine , Dogs , Feces/chemistry , Female , Galantamine/blood , Galantamine/urine , Humans , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...