Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 35(51): e2305967, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37703420

ABSTRACT

The advancement of highly integrated stretchable electronics requires the development of scalable sub-micrometer conductor patterning. Eutectic gallium indium (EGaIn) is an attractive conductor for stretchable electronics, as its liquid metallic character grants it high electrical conductivity upon deformation. However, its high surface tension makes its patterning with sub-micrometer resolution challenging. In this work, this limitation is overcome by way of the electrodeposition of EGaIn. A non-aqueous acetonitrile-based electrolyte that exhibits high electrochemical stability and chemical orthogonality is used. The electrodeposited material leads to low-resistance lines that remain stable upon (repeated) stretching to a 100% strain. Because electrodeposition benefits from the resolution of mature nanofabrication methods used to pattern the base metal, the proposed "bottom-up" approach achieves a record-high density integration of EGaIn regular lines of 300 nm half-pitch on an elastomer substrate by plating on a gold seed layer prepatterned by nanoimprinting. Moreover, vertical integration is enabled by filling high-aspect-ratio vias. This capability is conceptualized by the fabrication of an omnidirectionally stretchable 3D electronic circuit, and demonstrates a soft-electronic analog of the stablished damascene process used to fabricate microchip interconnects. Overall, this work proposes a simple route to address the challenge of metallization in highly integrated (3D) stretchable electronics.

2.
J Colloid Interface Sci ; 637: 500-512, 2023 May.
Article in English | MEDLINE | ID: mdl-36724664

ABSTRACT

HYPOTHESIS: Characterizing the microstructure of an ice/surface interface and its effect on the icephobic behavior of surfaces remains a significant challenge. Introducing X-ray Computed Tomography (XCT) can provide unprecedented insights into the internal (porosity) and interfacial structures, i.e. wetting regime, between (super)hydrophobic surfaces and ice by visualizing these optically inaccessible regions. EXPERIMENTS: Frozen droplets with controlled volume were deposited on top of metallic and polymeric substrates with different levels of wettability. Different modes of XCT (3D and 4D) were utilized to obtain information on the internal and interfacial structure of the ice/surface system. The results were supplemented by conventional surface analysis techniques, including optical profilometry and contact angle measurements. FINDINGS: Using XCT on ice/surface systems, the 3D and 4D (imaging with temporal resolution) structural information can be visualized. From these datasets, qualitative and quantitative results were obtained, not only for characterizing the interface but also for analyzing the entire droplet/surface system, e.g., measurement of porosity size, shape, and location. These results highlight the potential of XCT in the characterization of both droplets and substrates and proves that the technique can aid to develop hydrophobic surfaces for use as icephobic materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...