Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Hum Neurosci ; 15: 684573, 2021.
Article in English | MEDLINE | ID: mdl-34248528

ABSTRACT

OBJECTIVE: Stimulus-selective response modulation (SRM) of sensory evoked potentials represents a well-established non-invasive index of long-term potentiation-like (LTP-like) synaptic plasticity in the human sensory cortices. Although our understanding of the mechanisms underlying stimulus-SRM has increased over the past two decades, it remains unclear how this form of LTP-like synaptic plasticity is related to other basic learning mechanisms, such as perceptual learning. The aim of the current study was twofold; firstly, we aimed to corroborate former stimulus-SRM studies, demonstrating modulation of visual evoked potential (VEP) components following high-frequency visual stimulation. Secondly, we aimed to investigate the association between the magnitudes of LTP-like plasticity and visual perceptual learning (VPL). METHODS: 42 healthy adults participated in the study. EEG data was recorded during a standard high-frequency stimulus-SRM paradigm. Amplitude values were measured from the peaks of visual components C1, P1, and N1. Embedded in the same experimental session, the VPL task required the participants to discriminate between a masked checkerboard pattern and a visual "noise" stimulus before, during and after the stimulus-SRM probes. RESULTS: We demonstrated significant amplitude modulations of VEPs components C1 and N1 from baseline to both post-stimulation probes. In the VPL task, we observed a significant change in the average threshold levels from the first to the second round. No significant association between the magnitudes of LTP-like plasticity and performance on the VPL task was evident. CONCLUSION: To the extent of our knowledge, this study is the first to examine the relationship between the visual stimulus-RM phenomenon and VPL in humans. In accordance with previous studies, we demonstrated robust amplitude modulations of the C1 and N1 components of the VEP waveform. However, we did not observe any significant correlations between modulation magnitude of VEP components and VPL task performance, suggesting that these phenomena rely on separate learning mechanisms implemented by different neural mechanisms.

2.
Front Hum Neurosci ; 14: 576888, 2020.
Article in English | MEDLINE | ID: mdl-33192407

ABSTRACT

We investigated "musical effort" with an internationally renowned, classical, pianist while playing, listening, and imagining music. We used pupillometry as an objective measure of mental effort and fMRI as an exploratory method of effort with the same musical pieces. We also compared a group of non-professional pianists and non-musicians by the use of pupillometry and a small group of non-musicians with fMRI. This combined approach of psychophysiology and neuroimaging revealed the cognitive work during different musical activities. We found that pupil diameters were largest when "playing" (regardless of whether there was sound produced or not) compared to conditions with no movement (i.e., "listening" and "imagery"). We found positive correlations between pupil diameters of the professional pianist during different conditions with the same piano piece (i.e., normal playing, silenced playing, listen, imagining), which might indicate similar degrees of load on cognitive resources as well as an intimate link between the motor imagery of sound-producing body motions and gestures. We also confirmed that musical imagery had a strong commonality with music listening in both pianists and musically naïve individuals. Neuroimaging provided evidence for a relationship between noradrenergic (NE) activity and mental workload or attentional intensity within the domain of music cognition. We found effort related activity in the superior part of the locus coeruleus (LC) and, similarly to the pupil, the listening and imagery engaged less the LC-NE network than the motor condition. The pianists attended more intensively to the most difficult piece than the non-musicians since they showed larger pupils for the most difficult piece. Non-musicians were the most engaged by the music listening task, suggesting that the amount of attention allocated for the same task may follow a hierarchy of expertise demanding less attentional effort in expert or performers than in novices. In the professional pianist, we found only weak evidence for a commonality between subjective effort (as rated measure-by-measure) and the objective effort gauged with pupil diameter during listening. We suggest that psychophysiological methods like pupillometry can index mental effort in a manner that is not available to subjective awareness or introspection.

3.
J Vis ; 14(4)2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24692319

ABSTRACT

Attentional effort relates to the allocation of limited-capacity attentional resources to meet current task demands and involves the activation of top-down attentional systems in the brain. Pupillometry is a sensitive measure of this intensity aspect of top-down attentional control. Studies relate pupillary changes in response to cognitive processing to activity in the locus coeruleus (LC), which is the main hub of the brain's noradrenergic system and it is thought to modulate the operations of the brain's attentional systems. In the present study, participants performed a visual divided attention task known as multiple object tracking (MOT) while their pupil sizes were recorded by use of an infrared eye tracker and then were tested again with the same paradigm while brain activity was recorded using fMRI. We hypothesized that the individual pupil dilations, as an index of individual differences in mental effort, as originally proposed by Kahneman (1973), would be a better predictor of LC activity than the number of tracked objects during MOT. The current results support our hypothesis, since we observed pupil-related activity in the LC. Moreover, the changes in the pupil correlated with activity in the superior colliculus and the right thalamus, as well as cortical activity in the dorsal attention network, which previous studies have shown to be strongly activated during visual tracking of multiple targets. Follow-up pupillometric analyses of the MOT task in the same individuals also revealed that individual differences to cognitive load can be remarkably stable over a lag of several years. To our knowledge this is the first study using pupil dilations as an index of attentional effort in the MOT task and also relating these to functional changes in the brain that directly implicate the LC-NE system in the allocation of processing resources.


Subject(s)
Attention/physiology , Brain/physiology , Locus Coeruleus/physiology , Psychomotor Performance/physiology , Pupil/physiology , Adult , Female , Humans , Magnetic Resonance Imaging , Male , Mental Processes , Middle Aged , Photic Stimulation , Young Adult
4.
PLoS One ; 5(12): e14407, 2010 Dec 22.
Article in English | MEDLINE | ID: mdl-21203548

ABSTRACT

BACKGROUND: Pharmacological studies suggest that cholinergic neurotransmission mediates increases in attentional effort in response to high processing load during attention demanding tasks [1]. METHODOLOGY/PRINCIPAL FINDINGS: In the present study we tested whether individual variation in CHRNA4, a gene coding for a subcomponent in α4ß2 nicotinic receptors in the human brain, interacted with processing load in multiple-object tracking (MOT) and visual search (VS). We hypothesized that the impact of genotype would increase with greater processing load in the MOT task. Similarly, we predicted that genotype would influence performance under high but not low load in the VS task. Two hundred and two healthy persons (age range  =  39-77, Mean  =  57.5, SD  =  9.4) performed the MOT task in which twelve identical circular objects moved about the display in an independent and unpredictable manner. Two to six objects were designated as targets and the remaining objects were distracters. The same observers also performed a visual search for a target letter (i.e. X or Z) presented together with five non-targets while ignoring centrally presented distracters (i.e. X, Z, or L). Targets differed from non-targets by a unique feature in the low load condition, whereas they shared features in the high load condition. CHRNA4 genotype interacted with processing load in both tasks. Homozygotes for the T allele (N  =  62) had better tracking capacity in the MOT task and identified targets faster in the high load trials of the VS task. CONCLUSION: The results support the hypothesis that the cholinergic system modulates attentional effort, and that common genetic variation can be used to study the molecular biology of cognition.


Subject(s)
Attention/physiology , Receptors, Nicotinic/genetics , Adult , Aged , Brain/metabolism , Cognition , Female , Genetic Variation , Homozygote , Humans , Male , Middle Aged , Receptors, Nicotinic/metabolism , Visual Perception
SELECTION OF CITATIONS
SEARCH DETAIL
...