Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mob DNA ; 11(1): 33, 2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33317630

ABSTRACT

BACKGROUND: Retroelements (REs) occupy a significant part of all eukaryotic genomes including humans. The majority of retroelements in the human genome are inactive and unable to retrotranspose. Dozens of active copies are repressed in most normal tissues by various cellular mechanisms. These copies can become active in normal germline and brain tissues or in cancer, leading to new retroposition events. The consequences of such events and their role in normal cell functioning and carcinogenesis are not yet fully understood. If new insertions occur in a small portion of cells they can be found only with the use of specific methods based on RE enrichment and high-throughput sequencing. The downside of the high sensitivity of such methods is the presence of various artifacts imitating real insertions, which in many cases cannot be validated due to lack of the initial template DNA. For this reason, adequate assessment of rare (< 1%) subclonal cancer specific RE insertions is complicated. RESULTS: Here we describe a new copy-capture technique which we implemented in a method called SeqURE for Sequencing Unknown of Retroposition Events that allows for efficient and reliable identification of new genomic RE insertions. The method is based on the capture of copies of target molecules (copy-capture), selective amplification and sequencing of genomic regions adjacent to active RE insertions from both sides. Importantly, the template genomic DNA remains intact and can be used for validation experiments. In addition, we applied a novel system for testing method sensitivity and precisely showed the ability of the developed method to reliably detect insertions present in 1 out of 100 cells and a substantial portion of insertions present in 1 out of 1000 cells. Using advantages of the method we showed the absence of somatic Alu insertions in colorectal cancer samples bearing tumor-specific L1HS insertions. CONCLUSIONS: This study presents the first description and implementation of the copy-capture technique and provides the first methodological basis for the quantitative assessment of RE insertions present in a small portion of cells.

2.
Aging Cell ; 19(7): e13158, 2020 07.
Article in English | MEDLINE | ID: mdl-32515539

ABSTRACT

One important question in aging research is how differences in genomics and transcriptomics determine the maximum lifespan in various species. Despite recent progress, much is still unclear on the topic, partly due to the lack of samples in nonmodel organisms and due to challenges in direct comparisons of transcriptomes from different species. The novel ranking-based method that we employ here is used to analyze gene expression in the gray whale and compare its de novo assembled transcriptome with that of other long- and short-lived mammals. Gray whales are among the top 1% longest-lived mammals. Despite the extreme environment, or maybe due to a remarkable adaptation to its habitat (intermittent hypoxia, Arctic water, and high pressure), gray whales reach at least the age of 77 years. In this work, we show that long-lived mammals share common gene expression patterns between themselves, including high expression of DNA maintenance and repair, ubiquitination, apoptosis, and immune responses. Additionally, the level of expression for gray whale orthologs of pro- and anti-longevity genes found in model organisms is in support of their alleged role and direction in lifespan determination. Remarkably, among highly expressed pro-longevity genes many are stress-related, reflecting an adaptation to extreme environmental conditions. The conducted analysis suggests that the gray whale potentially possesses high resistance to cancer and stress, at least in part ensuring its longevity. This new transcriptome assembly also provides important resources to support the efforts of maintaining the endangered population of gray whales.


Subject(s)
DNA Repair/genetics , Longevity/genetics , Transcriptome/genetics , Ubiquitination/genetics , Animals , Whales
3.
BMC Evol Biol ; 17(Suppl 2): 258, 2017 12 28.
Article in English | MEDLINE | ID: mdl-29297306

ABSTRACT

BACKGROUND: Gray whale, Eschrichtius robustus (E. robustus), is a single member of the family Eschrichtiidae, which is considered to be the most primitive in the class Cetacea. Gray whale is often described as a "living fossil". It is adapted to extreme marine conditions and has a high life expectancy (77 years). The assembly of a gray whale genome and transcriptome will allow to carry out further studies of whale evolution, longevity, and resistance to extreme environment. RESULTS: In this work, we report the first de novo assembly and primary analysis of the E. robustus genome and transcriptome based on kidney and liver samples. The presented draft genome assembly is complete by 55% in terms of a total genome length, but only by 24% in terms of the BUSCO complete gene groups, although 10,895 genes were identified. Transcriptome annotation and comparison with other whale species revealed robust expression of DNA repair and hypoxia-response genes, which is expected for whales. CONCLUSIONS: This preliminary study of the gray whale genome and transcriptome provides new data to better understand the whale evolution and the mechanisms of their adaptation to the hypoxic conditions.


Subject(s)
Genome , Transcriptome/genetics , Whales/genetics , Animals , Gene Expression Regulation , Gene Library , Molecular Sequence Annotation , Phylogeny
4.
J Mol Cell Biol ; 7(4): 366-82, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25280477

ABSTRACT

DNA double-strand breaks (DSBs) are involved in many cellular mechanisms, including replication, transcription, and genome rearrangements. The recent observation that hot spots of DSBs in human chromosomes delimit DNA domains that possess coordinately expressed genes suggests a strong relationship between the organization of transcription patterns and hot spots of DSBs. In this study, we performed mapping of hot spots of DSBs in a human 43-kb ribosomal DNA (rDNA) repeated unit. We observed that rDNA units corresponded to the most fragile sites in human chromosomes and that these units possessed at least nine specific regions containing clusters of extremely frequently occurring DSBs, which were located exclusively in non-coding intergenic spacer (IGS) regions. The hot spots of DSBs corresponded to only a specific subset of DNase-hypersensitive sites, and coincided with CTCF, PARP1, and HNRNPA2B1 binding sites, and H3K4me3 marks. Our rDNA-4C data indicate that the regions of IGS containing the hot spots of DSBs often form contacts with specific regions in different chromosomes, including the pericentromeric regions, as well as regions that are characterized by H3K27ac and H3K4me3 marks, CTCF binding sites, ChIA-PET and RIP signals, and high levels of DSBs. The data suggest a strong link between chromosome breakage and several different mechanisms of epigenetic regulation of gene expression.


Subject(s)
DNA Breaks, Double-Stranded , DNA, Ribosomal/genetics , Epigenesis, Genetic , Genome, Human , CCCTC-Binding Factor , Chromatin/metabolism , Chromatin Immunoprecipitation , Chromosomes, Human/genetics , DNA Methylation/genetics , DNA Replication/genetics , Deoxyribonuclease I/metabolism , HEK293 Cells , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , Histones/metabolism , Humans , Lysine/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Polymerase Chain Reaction , Protein Binding , Repressor Proteins/metabolism , Sequence Analysis, DNA , Stress, Physiological/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...