Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36850572

ABSTRACT

In this paper, an autonomous payload proposal for a nanosatellite mission allowing for the cultivation of grains in space was presented. For the first time, a micropot made with 3D printing technology, enabling the parametric determination of plant growth, both on Earth and in the simulated microgravity condition, was presented. A completed system for dosing the nutrient solution and observing the growth of a single grain, where the whole size did not exceed 70 × 50 × 40 mm3, was shown. The cultivation of Lepidium sativum seeds was carried out in the developed system, in terrestrial conditions and simulated microgravity conditions, using the RPM (Random Position Machine) device. The differences in plant growth depending on the environment were observed. It could be seen that the grains grown in simulated microgravity took longer to reach the full development stage of the plant. At the same time, fewer grains reached this stage and only remained at the earlier stages of growth. The conducted research allowed for the presentation of the payload concept for a 3U CubeSat satellite for research into the development of plants in space.


Subject(s)
Germination , Seeds , Edible Grain , Nutrients , Printing, Three-Dimensional
2.
Sensors (Basel) ; 22(16)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36015950

ABSTRACT

In the paper, the lab-on-chip platform applicable for the long-term cultivation of human cancer cells, as a solution meeting the demands of the CubeSat biological missions, is presented. For the first time, the selected cancer cell lines-UM-UC-3 and RT 112 were cultured on-chip for up to 50 days. The investigation was carried out in stationary conditions (without medium microflow) in ambient temperature and utilizing the microflow perfusion system in the incubation chamber assuring typical cultivation atmosphere (37 °C). All the experiments were performed to imitate the conditions that are provided before the biological mission starts (waiting for the rocket launch) and when the actual experiment is initialized on a CubeSat board in space microgravity. The results of the tests showed appropriate performance of the lab-on-chip platform, especially in the context of material and technological biocompatibility. Cultured cells were characterized by adequate morphology-high attachment rate and visible signs of proliferation in each of the experimental stage. These results are a good basis for further tests of the lab-on-chip platform in both terrestrial and space conditions. At the end of the manuscript, the authors provide some considerations regarding a potential 3-Unit CubeSat biological mission launched with Virgin Orbit company. The lab-on-chip platform was modelled to fit a 2-Unit autonomous laboratory payload.


Subject(s)
Microfluidics , Neoplasms , Cell Line , Cells, Cultured , Exobiology , Humans , Lab-On-A-Chip Devices , Perfusion
3.
Cancers (Basel) ; 13(3)2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33499085

ABSTRACT

The dynamic development of the space industry makes space flights more accessible and opens up new opportunities for biological research to better understand cell physiology under real microgravity. Whereas specialized studies in space remain out of our reach, preliminary experiments can be performed on Earth under simulated microgravity (sµg). Based on this concept, we used a 3D-clinostat (3D-C) to analyze the effect of short exposure to sµg on human keratinocytes HaCaT and melanoma cells A375 cultured on all-glass Lab-on-a-Chip (LOC). Our preliminary studies included viability evaluation, mitochondrial and caspase activity, and proliferation assay, enabling us to determine the effect of sµg on human cells. By comparing the results concerning cells cultured on LOCs and standard culture dishes, we were able to confirm the biocompatibility of all-glass LOCs and their potential application in microgravity research on selected human cell lines. Our studies revealed that HaCaT and A375 cells are susceptible to simulated microgravity; however, we observed an increased caspase activity and a decrease of proliferation in cancer cells cultured on LOCs in comparison to standard cell cultures. These results are an excellent basis to conduct further research on the possible application of LOCs systems in cancer research in space.

4.
Micromachines (Basel) ; 11(2)2020 Feb 14.
Article in English | MEDLINE | ID: mdl-32074950

ABSTRACT

This paper presents a full-featured microfluidic platform ensuring long-term culturing and behavioral analysis of the radically different biological micro-objects. The platform uses all-glass lab-chips and MEMS-based components providing dedicated micro-aquatic habitats for the cells, as well as their intentional disturbances on-chip. Specially developed software was implemented to characterize the micro-objects metrologically in terms of population growth and cells' size, shape, or migration activity. To date, the platform has been successfully applied for the culturing of freshwater microorganisms, fungi, cancer cells, and animal oocytes, showing their notable population growth, high mobility, and taxis mechanisms. For instance, circa 100% expansion of porcine oocytes cells, as well as nearly five-fold increase in E. gracilis population, has been achieved. These results are a good base to conduct further research on the platform versatile applications.

5.
Biomed Res Int ; 2014: 467063, 2014.
Article in English | MEDLINE | ID: mdl-25548771

ABSTRACT

Since microfollicular environment and the size of the follicle are important markers influencing oocyte quality, the aim of this study is to present the spectral characterization of oocytes isolated from follicles of various sizes using lab-on-chip (LOC) technology and to demonstrate how follicle size may affect oocyte quality. Porcine oocytes (each, n = 100) recovered from follicles of different sizes, for example, from large (>5 mm), medium (3-5 mm), and small (<3 mm), were analyzed after preceding in vitro maturation (IVM). The LOC analysis was performed using a silicon-glass sandwich with two glass optical fibers positioned "face-to-face." Oocytes collected from follicles of different size classes revealed specific and distinguishable spectral characteristics. The absorbance spectra (microspectrometric specificity) for oocytes isolated from large, medium, and small follicles differ significantly (P < 0.05) and the absorbance wavelengths were between 626 and 628 nm, between 618 and 620 nm, and less than 618 nm, respectively. The present study offers a parametric and objective method of porcine oocyte assessment. However, up to now this study has been used to evidence spectral markers associated with follicular size in pigs, only. Further investigations with functional-biological assays and comparing LOC analyses with fertilization and pregnancy success and the outcome of healthy offspring must be performed.


Subject(s)
Microfluidic Analytical Techniques/methods , Oocytes/growth & development , Ovarian Follicle/growth & development , Animals , Female , Humans , In Vitro Oocyte Maturation Techniques , Pregnancy , Swine
6.
Lab Chip ; 11(19): 3263-8, 2011 Oct 07.
Article in English | MEDLINE | ID: mdl-21833426

ABSTRACT

Detection of apoptosis is one of the main criteria of preimplantation embryo growth potential assessment. Recent developments in lab-on-a-chip techniques has led to apoptosis detection and monitoring on a single cell or embryo level. However, single embryo apoptosis detection without a change in embryo developmental competence and post-examination "recovery" still remains a challenge. In this paper we present a lab-on-a-chip, co-working with miniaturized optical instrumentation, which allows supravital examination of single embryos for the presence of apoptotic blastomers with full after lab-on-a-chip study "recovery" and maintenance of their further developmental capacity.


Subject(s)
Apoptosis , Embryo, Mammalian/cytology , Fluorometry/methods , Animals , Lab-On-A-Chip Devices , Mice , Miniaturization
SELECTION OF CITATIONS
SEARCH DETAIL
...