Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Can Respir J ; 2023: 1522593, 2023.
Article in English | MEDLINE | ID: mdl-36710924

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic disease characterized by excessive deposition of extracellular matrix in the interstitial lung parenchyma, often manifested by dyspnea and progressive loss of lung function. The role of inflammation in the pathogenesis of IPF is not well understood. This study evaluated the histopathological and inflammatory components of bleomycin-induced pulmonary fibrosis in mouse and sheep models, in terms of their ability to translate to the human IPF. Merino sheep (n = 8) were bronchoscopically administered with two bleomycin infusions, two weeks apart, into a caudal lung segment, with a saline (control) administered into a caudal segment in the opposite lung. Balb/c mice were twice intranasally instilled, one week apart, with either bleomycin (n = 7); or saline (control, n = 7). Lung samples were taken for the histopathological assessment 28 days in sheep and 21 days in mice after the first bleomycin administration. We observed tertiary lymphoid aggregates, in the fibrotic lung parenchyma of sheep, but not in mouse lung tissues exposed to bleomycin. B-cell and T-cell infiltration significantly increased in sheep lung tissues compared to mouse lung tissues due to bleomycin injury. Statistical analysis showed that the fibrotic score, fibrotic fraction, and tissue fraction significantly increased in sheep lung tissues compared to murine lung tissues. The presence of tertiary lymphoid aggregates in the lung parenchyma and increased infiltration of T-cells and B-cells, in the sheep model, may be useful for the future study of the underlying inflammatory disease mechanisms in the lung parenchyma of IPF patients.


Subject(s)
Bleomycin , Idiopathic Pulmonary Fibrosis , Humans , Mice , Animals , Bleomycin/toxicity , Disease Models, Animal , Lung/pathology , Inflammation
2.
Cell Mol Life Sci ; 79(11): 579, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36319916

ABSTRACT

Sulforaphane has been investigated in human pathologies and preclinical models of airway diseases. To provide further mechanistic insights, we explored L-sulforaphane (LSF) in the ovalbumin (OVA)-induced chronic allergic airways murine model, with key hallmarks of asthma. Histological analysis indicated that LSF prevented or reversed OVA-induced epithelial thickening, collagen deposition, goblet cell metaplasia, and inflammation. Well-known antioxidant and anti-inflammatory mechanisms contribute to the beneficial effects of LSF. Fourier transform infrared microspectroscopy revealed altered composition of macromolecules, following OVA sensitization, which were restored by LSF. RNA sequencing in human peripheral blood mononuclear cells highlighted the anti-inflammatory signature of LSF. Findings indicated that LSF may alter gene expression via an epigenetic mechanism which involves regulation of protein acetylation status. LSF resulted in histone and α-tubulin hyperacetylation in vivo, and cellular and enzymatic assays indicated decreased expression and modest histone deacetylase (HDAC) inhibition activity, in comparison with the well-known pan-HDAC inhibitor suberoylanilide hydroxamic acid (SAHA). Molecular modeling confirmed interaction of LSF and LSF metabolites with the catalytic domain of metal-dependent HDAC enzymes. More generally, this study confirmed known mechanisms and identified potential epigenetic pathways accounting for the protective effects and provide support for the potential clinical utility of LSF in allergic airways disease.


Subject(s)
Antioxidants , Hypersensitivity , Mice , Humans , Animals , Leukocytes, Mononuclear , Ovalbumin , Epigenesis, Genetic , Anti-Inflammatory Agents
3.
BMC Genomics ; 22(1): 827, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34789159

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic progressive fibroproliferative disorder that has one of the poorest prognoses amongst interstitial lung diseases. Recently, the finding of aberrant expression levels of miRNAs in IPF patients has drawn significant attention to the involvement of these molecules in the pathogenesis of this disease. Clarification of the differential expression of miRNAs in health and disease may identify novel therapeutic strategies that can be employed in the future to combat IPF. This study evaluates the miRNA expression profiles in a sheep model for lung fibrosis and compares them to the miRNA profiles of both IPF patients and the mouse bleomycin model for pulmonary fibrosis. Pathway enrichment analyses were performed on differentially expressed miRNAs to illustrate which biological mechanisms were associated with lung fibrosis. RESULTS: We discovered 49 differentially expressed miRNAs in the sheep fibrosis model, in which 32 miRNAs were significantly down regulated, while 17 miRNAs were significantly upregulated due to bleomycin-induced lung injury. Moreover, the miRNA families miR-29, miR-26, miR-30, let-7, miR-21, miR-19, miR-17 and miR-199 were aberrantly expressed in both sheep and mouse models, with similar differential miRNAs expression observed in IPF cases. Importantly, 18 miRNAs were aberrantly expressed in both the sheep model and IPF patients, but not in mice. CONCLUSION: Together with pathway enrichment analyses, these results show that the sheep model can potentially be used to characterize previously unrecognized biological pathways associated with lung fibrosis.


Subject(s)
Idiopathic Pulmonary Fibrosis , MicroRNAs , Animals , Bleomycin/toxicity , Genetic Techniques , Humans , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/genetics , Lung , Mice , MicroRNAs/genetics , Sheep
4.
Int J Antimicrob Agents ; 58(6): 106460, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34695564

ABSTRACT

L-sulforaphane (LSF) is an isothiocyanate derived from cruciferous vegetables that has long been known for its anticarcinogenic, antioxidant and anti-inflammatory effects. LSF also possesses antimicrobial properties, although the evidence for this is limited. Respiratory pathogens, such as Streptococcus pneumoniae, Haemophilus influenzae, Streptococcus pyogenes and respiratory syncytial virus (RSV), are leading global causes of illness and death among children aged under five years, particularly in resource-poor countries where access to vaccines are limited or, in the case of S. pyogenes and RSV, vaccines have not been licensed for use in humans. Therefore, alternative strategies to prevent and/or treat these common infectious diseases are urgently needed. This study was conducted to investigate the antimicrobial effects of LSF against common respiratory pathogens, S. pneumoniae (serotypes 1 and 6B), H. influenzae type B (HiB), non-typeable H. influenzae (NTHi), S. pyogenes and RSV in relevant human cell-based models. LSF significantly inhibited the growth of H. influenzae, but not S. pneumoniae or S. pyogenes. LSF did not improve opsonophagocytic capacity or killing by human phagocytic cell lines (HL-60s and THP-1 macrophages) for S. pneumoniae yet showed some improved killing for H. influenzae species in THP-1 macrophages. However, LSF significantly reduced RSV infection in human lung epithelial cells, associated with increased expression of cyclin D1 (CCND1) gene as well as the antioxidant genes, nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HMOX-1). Overall, LSF represents an exciting avenue for further antimicrobial research, particularly as a novel therapy against H. influenzae species and RSV.


Subject(s)
Anti-Bacterial Agents/pharmacology , Haemophilus Infections/drug therapy , Isothiocyanates/pharmacology , Pneumococcal Infections/drug therapy , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Tract Infections/drug therapy , Sulfoxides/pharmacology , Cell Line , Cyclin D1/metabolism , HL-60 Cells , Haemophilus influenzae/drug effects , Haemophilus influenzae/growth & development , Heme Oxygenase-1/metabolism , Humans , Macrophages/drug effects , Macrophages/immunology , Microbial Sensitivity Tests , NF-E2-Related Factor 2/metabolism , Opsonization/drug effects , Respiratory Syncytial Viruses/drug effects , Respiratory Tract Infections/microbiology , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/growth & development , Streptococcus pyogenes/drug effects , Streptococcus pyogenes/growth & development , THP-1 Cells , Vegetables/chemistry
5.
Can Respir J ; 2021: 6683195, 2021.
Article in English | MEDLINE | ID: mdl-33828632

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease, characterized by progressive damage to the lung tissues. Apoptosis and endoplasmic reticulum stress (ER stress) in type II alveolar epithelial cells (AECs) and lung macrophages have been linked with the development of IPF. Therefore, apoptosis- and ER stress-targeted therapies have drawn attention as potential avenues for treatment of IPF. The calcium-activated potassium ion channel KCa3.1 has been proposed as a potential therapeutic target for fibrotic diseases including IPF. While KCa3.1 is expressed in AECs and macrophages, its influence on ER stress and apoptosis during the disease process is unclear. We utilized a novel sheep model of pulmonary fibrosis to demonstrate that apoptosis and ER stress occur in type II AECs and macrophages in sheep with bleomycin-induced lung fibrosis. Apoptosis in type II AEC and macrophages was identified using the TUNEL method of tagging fragmented nuclear DNA, while ER stress was characterized by increased expression of GRP-78 ER chaperone proteins. We demonstrated that apoptosis and ER stress in type II AECs and macrophages increased significantly 2 weeks after the final bleomycin infusion and remained high for up to 7 weeks post-bleomycin injury. Senicapoc treatment significantly reduced the rates of ER stress in type II AECs and macrophages that were resident in bleomycin-infused lung segments. There were also significant reductions in the rates of apoptosis of type II AECs and macrophages in the lung segments of senicapoc-treated sheep. In vivo blockade of the KCa3.1 ion channel alleviates the ER stress and apoptosis in type II AECs and macrophages, and this effect potentially contributes to the anti-fibrotic effects of senicapoc.


Subject(s)
Bleomycin , Idiopathic Pulmonary Fibrosis , Animals , Apoptosis , Endoplasmic Reticulum Stress , Ion Channels , Sheep
6.
Nutrients ; 13(2)2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33673203

ABSTRACT

The dietary isothiocyanate L-sulforaphane (LSF), derived from cruciferous vegetables, is reported to have several beneficial biological properties, including anti-inflammatory and immunomodulatory effects. However, there is limited data on how LSF modulates these effects in human immune cells. The present study was designed to investigate the immunomodulatory effects of LSF (10 µM and 50 µM) on peripheral blood mononuclear cell (PBMC) populations and cytokine secretion in healthy adult volunteers (n = 14), in the presence or absence of bacterial (lipopolysaccharide) and viral (imiquimod) toll-like receptor (TLRs) stimulations. Here, we found that LSF reduced pro-inflammatory cytokines interleukin (IL)-6, IL-1ß, and chemokines monocyte chemoattractant protein (MCP)-1 irrespective of TLR stimulations. This result was associated with LSF significantly reducing the proportion of natural killer (NK) cells and monocytes while increasing the proportions of dendritic cells (DCs), T cells and B cells. We found a novel effect of LSF in relation to reducing cluster of differentiation (CD) 14+ monocytes while simultaneously increasing monocyte-derived DCs (moDCs: lineage-Human Leukocyte Antigen-DR isotype (HLA-DR)+CD11blow-high CD11chigh). LSF was also shown to induce a 3.9-fold increase in the antioxidant response element (ARE) activity in a human monocyte cell line (THP-1). Our results provide important insights into the immunomodulatory effects of LSF, showing in human PBMCs an ability to drive differentiation of monocytes towards an immature monocyte-derived dendritic cell phenotype with potentially important biological functions. These findings provide insights into the potential role of LSF as a novel immunomodulatory drug candidate and supports the need for further preclinical and phase I clinical studies.


Subject(s)
Immunologic Factors/pharmacology , Immunomodulation/drug effects , Isothiocyanates/pharmacology , Leukocytes, Mononuclear/immunology , Sulfoxides/pharmacology , Adult , Bodily Secretions , Cell Differentiation , Cell Line , Cytokines/metabolism , Dendritic Cells/immunology , Female , Healthy Volunteers , Humans , Killer Cells, Natural/immunology , Male
7.
Sci Rep ; 10(1): 11713, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32678217

ABSTRACT

The ovalbumin-induced (OVA) chronic allergic airways murine model is a well-established model for investigating pre-clinical therapies for chronic allergic airways diseases, such as asthma. Here, we examined the effects of several experimental compounds with potential anti-asthmatic effects including resveratrol (RV), relaxin (RLN), L-sulforaphane (LSF), valproic acid (VPA), and trichostatin A (TSA) using both a prevention and reversal model of chronic allergic airways disease. We undertook a novel analytical approach using focal plane array (FPA) and synchrotron Fourier-transform infrared (S-FTIR) microspectroscopic techniques to provide new insights into the mechanisms of action of these experimental compounds. Apart from the typical biological effects, S-FTIR microspectroscopy was able to detect changes in nucleic acids and protein acetylation. Further, we validated the reduction in collagen deposition induced by each experimental compound evaluated. Although this has previously been observed with conventional histological methods, the S-FTIR technique has the advantage of allowing identification of the type of collagen present. More generally, our findings highlight the potential utility of S-FTIR and FPA-FTIR imaging techniques in enabling a better mechanistic understanding of novel asthma therapeutics.


Subject(s)
Anti-Asthmatic Agents/administration & dosage , Asthma/drug therapy , Hydroxamic Acids/administration & dosage , Isothiocyanates/administration & dosage , Relaxin/administration & dosage , Resveratrol/administration & dosage , Valproic Acid/administration & dosage , Animals , Asthma/chemically induced , Chronic Disease/drug therapy , Disease Models, Animal , Drug Evaluation, Preclinical/methods , Female , Mice , Mice, Inbred BALB C , Ovalbumin/adverse effects , Spectroscopy, Fourier Transform Infrared/methods , Sulfoxides , Synchrotrons , Treatment Outcome
8.
Clin Nutr ; 39(3): 664-675, 2020 03.
Article in English | MEDLINE | ID: mdl-30954362

ABSTRACT

According to the World Health Organisation, 70% of all deaths globally can be attributed to chronic inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease, respiratory conditions, cardiovascular diseases, diabetes and cancer. Chronic inflammation has a significant impact on the quality of life of affected individuals with an increased risk of developing other chronic inflammatory diseases. Given the limitations of current pharmaceuticals, there is an intense research interest in identifying novel dietary interventions that can regulate and alleviate inflammation. A diet rich in cruciferous vegetables has been extensively studied for its immediate and long-term health benefits, particularly in the context of cardiovascular disease and cancer. Cruciferous vegetables contain the precursor glucoraphanin, which is hydrolysed upon consumption to form l-sulforaphane (LSF), the primary active compound that mediates potential cardio-protective and anti-carcinogenic effects. LSF has been shown to have beneficial effects in vitro and in animal studies through its classical antioxidant and anti-inflammatory properties, and more recently its chromatin modifying effects. This review discusses the clinical evidence to date in relation to the use of LSF in the context of chronic inflammatory diseases as well as provide key mechanistic insights for these effects.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Chronic Disease/drug therapy , Inflammation/drug therapy , Isothiocyanates/therapeutic use , Sulfoxides/therapeutic use , Humans
9.
J Cell Mol Med ; 22(5): 2826-2837, 2018 05.
Article in English | MEDLINE | ID: mdl-29516637

ABSTRACT

Neovascularization, increased basal membrane thickness and increased airway smooth muscle (ASM) bulk are hallmarks of airway remodelling in asthma. In this study, we examined connective tissue growth factor (CTGF) dysregulation in human lung tissue and animal models of allergic airway disease. Immunohistochemistry revealed that ASM cells from patients with severe asthma (A) exhibited high expression of CTGF, compared to mild and non-asthmatic (NA) tissues. This finding was replicated in a sheep model of allergic airways disease. In vitro, transforming growth factor (TGF)-ß increased CTGF expression both in NA- and A-ASM cells but the expression was higher in A-ASM at both the mRNA and protein level as assessed by PCR and Western blot. Transfection of CTGF promoter-luciferase reporter constructs into NA- and A-ASM cells indicated that no region of the CTGF promoter (-1500 to +200 bp) displayed enhanced activity in the presence of TGF-ß. However, in silico analysis of the CTGF promoter suggested that distant transcription factor binding sites may influence CTGF promoter activation by TGF-ß in ASM cells. The discord between promoter activity and mRNA expression was also explained, in part, by differential post-transcriptional regulation in A-ASM cells due to enhanced mRNA stability for CTGF. In patients, higher CTGF gene expression in bronchial biopsies was correlated with increased basement membrane thickness indicating that the enhanced CTGF expression in A-ASM may contribute to airway remodelling in asthma.


Subject(s)
Airway Remodeling , Asthma/metabolism , Asthma/physiopathology , Connective Tissue Growth Factor/metabolism , Lung/metabolism , Lung/physiopathology , Muscle, Smooth/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Asthma/genetics , Asthma/pathology , Base Pairing/genetics , Basement Membrane/metabolism , Basement Membrane/pathology , Connective Tissue Growth Factor/genetics , Female , Gene Expression Regulation , Humans , Male , Middle Aged , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Promoter Regions, Genetic/genetics , Pyroglyphidae , RNA Stability/genetics , Sheep , Young Adult
10.
Hell J Nucl Med ; 20 Suppl: 103-113, 2017.
Article in English | MEDLINE | ID: mdl-29324919

ABSTRACT

Asthma is a chronic respiratory disease characterised by airway inflammation, remodeling and hyperresponsiveness. The ability to replicate these asthma traits in the well-established ovalbumin induced chronic model of allergic airways disease is an important tool for asthma research and preclinical drug development. Here, spectra derived from focal plane array and Synchrotron-Fourier transform infrared maps were used to analyse biochemical changes in lung tissue from an ovalbumin-induced murine chronic allergic airways disease model. Analysis of the chemical maps resulted in distinct clusters and significant changes in the lipid and proteins regions of the spectra between the saline control and diseased lung tissue samples. Overall, the utilisation of conventional histological methodologies and Synchrotron infrared microspectroscopy has the ability to expand the characterisation of murine models of asthma.


Subject(s)
Asthma/immunology , Asthma/pathology , Ovalbumin/immunology , Spectroscopy, Fourier Transform Infrared/instrumentation , Synchrotrons , Animals , Asthma/diagnosis , Histology , Lung/immunology , Lung/pathology , Mice , Mice, Inbred BALB C
11.
Sci Rep ; 6: 26309, 2016 05 20.
Article in English | MEDLINE | ID: mdl-27199164

ABSTRACT

Tumstatin, a protein fragment of the alpha-3 chain of Collagen IV, is known to be significantly reduced in the airways of asthmatics. Further, there is evidence that suggests a link between the relatively low level of tumstatin and the induction of angiogenesis and inflammation in allergic airway disease. Here, we show that the intra-segmental administration of tumstatin can impede the development of vascular remodelling and allergic inflammatory responses that are induced in a segmental challenge model of experimental asthma in sheep. In particular, the administration of tumstatin to lung segments chronically exposed to house dust mite (HDM) resulted in a significant reduction of airway small blood vessels in the diameter range 10(+)-20 µm compared to controls. In tumstatin treated lung segments after HDM challenge, the number of eosinophils was significantly reduced in parenchymal and airway wall tissues, as well as in the bronchoalveolar lavage fluid. The expression of VEGF in airway smooth muscle was also significantly reduced in tumstatin-treated segments compared to control saline-treated segments. Allergic lung function responses were not attenuated by tumstatin administration in this model. The data are consistent with the concept that tumstatin can act to suppress vascular remodelling and inflammation in allergic airway disease.


Subject(s)
Asthma/physiopathology , Autoantigens/pharmacology , Collagen Type IV/pharmacology , Lung/pathology , Vascular Remodeling/drug effects , Airway Resistance/drug effects , Allergens/administration & dosage , Animals , Asthma/immunology , Autoantigens/administration & dosage , Bronchoalveolar Lavage Fluid/cytology , Chronic Disease , Collagen Type IV/administration & dosage , Dermatophagoides pteronyssinus/immunology , Female , Inflammation/pathology , Lung/blood supply , Lung/immunology , Muscle, Smooth/metabolism , Sheep, Domestic , Vascular Endothelial Growth Factor A/metabolism
12.
Hum Vaccin Immunother ; 11(2): 377-85, 2015.
Article in English | MEDLINE | ID: mdl-25692970

ABSTRACT

While most pathogens infect via mucosal surfaces, most current vaccines are delivered by injection. This situation remains despite awareness of the potential benefits of mucosal delivery for inducing protection against mucosa-infecting pathogens. A major obstacle to the development of such vaccines is the paucity of safe and effective adjuvants that induce mucosal responses in non-rodents. Previously we demonstrated in sheep the potency of pulmonary-delivered influenza ISCOMATRIX™ vaccine, which induces both mucosal and systemic immunity, even with low antigen doses. In the current study, lung pre-exposure to influenza antigen alone significantly reduced the immune response to subsequent pulmonary-delivered influenza ISCOMATRIX™ vaccine. A single dose of influenza antigen, delivered to the lung without exogenous adjuvant, upregulated IL-10 expression in bronchoalveolar lavage cells and FOXP3 expression in lung tissue, suggestive of induction of a regulatory T cell (Treg) response. However, this effect was inhibited by addition of ISCOMATRIX™ adjuvant. Moreover, effective pulmonary immunization with influenza ISCOMATRIX™ vaccine was associated with a depletion of Treg markers within lung tissues. Lung exposure to influenza antigen induced a localized mucosal tolerance that reduced the efficacy of subsequent influenza ISCOMATRIX™ vaccination. An important role of ISCOMATRIX™ adjuvant in pulmonary vaccination appears to be the depletion of Treg in lung tissues. Pulmonary vaccination remains capable of inducing a strong immune response against mucosal pathogens, but likely requires an adjuvant to overcome mucosal tolerance. ISCOMATRIX™ appears to have considerable potential as a mucosal adjuvant for use in humans, a major unmet need in mucosal vaccine development.


Subject(s)
Adjuvants, Immunologic/pharmacology , Cholesterol/pharmacology , Immune Tolerance/drug effects , Immunity, Mucosal , Influenza Vaccines/administration & dosage , Orthomyxoviridae Infections/prevention & control , Phospholipids/pharmacology , Saponins/pharmacology , Vaccination/methods , Animals , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Drug Combinations , Female , Instillation, Drug , Lung/immunology , Orthomyxoviridae Infections/immunology , Sheep , T-Lymphocytes, Regulatory/drug effects
13.
PLoS One ; 8(6): e66886, 2013.
Article in English | MEDLINE | ID: mdl-23826167

ABSTRACT

BACKGROUND: The Ca(2+)-activated K(+) channel K(Ca)3.1 is expressed in several structural and inflammatory airway cell types and is proposed to play an important role in the pathophysiology of asthma. The aim of the current study was to determine whether inhibition of K(Ca)3.1 modifies experimental asthma in sheep. METHODOLOGY AND PRINCIPAL FINDINGS: Atopic sheep were administered either 30 mg/kg Senicapoc (ICA-17073), a selective inhibitor of the K(Ca)3.1-channel, or vehicle alone (0.5% methylcellulose) twice daily (orally). Both groups received fortnightly aerosol challenges with house dust mite allergen for fourteen weeks. A separate sheep group received no allergen challenges or drug treatment. In the vehicle-control group, twelve weeks of allergen challenges resulted in a 60±19% increase in resting airway resistance, and this was completely attenuated by treatment with Senicapoc (0.25±12%; n = 10, P = 0.0147). The vehicle-control group had a peak-early phase increase in lung resistance of 82±21%, and this was reduced by 58% with Senicapoc treatment (24±14%; n = 10, P = 0.0288). Senicapoc-treated sheep also demonstrated reduced airway hyperresponsiveness, requiring a significantly higher dose of carbachol to increase resistance by 100% compared to allergen-challenged vehicle-control sheep (20±5 vs. 52±18 breath-units of carbachol; n = 10, P = 0.0340). Senicapoc also significantly reduced eosinophil numbers in bronchoalveolar lavage taken 48 hours post-allergen challenge, and reduced vascular remodelling. CONCLUSIONS: These findings suggest that K(Ca)3.1-activity contributes to allergen-induced airway responses, inflammation and vascular remodelling in a sheep model of asthma, and that inhibition of K(Ca)3.1 may be an effective strategy for blocking allergen-induced airway inflammation and hyperresponsiveness in humans.


Subject(s)
Asthma/physiopathology , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Lung/physiopathology , Sheep/physiology , Acetamides/pharmacology , Airway Remodeling/drug effects , Airway Resistance/drug effects , Animals , Asthma/pathology , Blood Vessels/drug effects , Blood Vessels/pathology , Blood Vessels/physiopathology , Bronchoalveolar Lavage Fluid/cytology , Carbachol/pharmacology , Chronic Disease , Disease Models, Animal , Eosinophils/drug effects , Eosinophils/pathology , Female , Leukocyte Count , Lung/drug effects , Lung/pathology , Mast Cells/drug effects , Mast Cells/pathology , Muscle, Smooth/drug effects , Muscle, Smooth/pathology , Muscle, Smooth/physiopathology , Pyroglyphidae/drug effects , Pyroglyphidae/physiology , T-Lymphocytes/drug effects , T-Lymphocytes/pathology , Trityl Compounds/pharmacology
14.
Exp Lung Res ; 38(6): 307-15, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22734813

ABSTRACT

BACKGROUND: Increases in blood vessel density and vascular area are now recognized as important features of remodeled airways in asthma. However, the time sequence for these vascular changes and whether they resolve in the absence of continued antigenic exposure is not well elucidated. The aim of the present study was to correlate progressive changes in airway vascularity with changes in functional airway responses in sheep chronically challenged with house dust mite (HDM) allergen, and to examine the resolution of vascular remodeling following allergen withdrawal. METHODS: Progressive changes in vascular indices were examined in four spatially separate lung segments that received weekly challenges with HDM allergen for 0, 8, 16, or 24 weeks. Reversibility of these changes was assessed in a separate experiment in which two lung segments received 24 weeks of HDM challenges and either no rest or 12 weeks rest. Lung tissue was collected from each segment 7 days following the final challenge and vascular changes assessed by a morphometric analysis of airways immunohistochemically stained with an antibody against type IV collagen. RESULTS: Blood vessel density and percent airway vascularity were significantly increased in bronchi following 24 weeks of HDM challenges compared to untreated controls (P < .05), but not at any of the other time-points. There was no significant correlation between vascular indices and airway responses to allergic or nonspecific stimuli. The increase in blood vessel density induced by repeated allergen exposures did not return to baseline levels following a 12-week withdrawal period from allergen. CONCLUSIONS: Our results show for the first time that the airways of sheep chronically exposed to HDM allergen undergo vascular remodeling. These findings show the potential of this large animal model for investigating airway angiogenesis in asthma.


Subject(s)
Airway Remodeling/immunology , Asthma/immunology , Asthma/pathology , Blood Vessels/pathology , Lung/immunology , Lung/pathology , Allergens/immunology , Animals , Disease Models, Animal , Female , Pyroglyphidae/immunology , Sheep
15.
PLoS One ; 7(5): e37161, 2012.
Article in English | MEDLINE | ID: mdl-22606346

ABSTRACT

BACKGROUND: Increased mast cell (MC) density and changes in their distribution in airway tissues is thought to contribute significantly to the pathophysiology of asthma. However, the time sequence for these changes and how they impact small airway function in asthma is not fully understood. The aim of the current study was to characterise temporal changes in airway MC density and correlate these changes with functional airway responses in sheep chronically challenged with house dust mite (HDM) allergen. METHODOLOGY/PRINCIPAL FINDINGS: MC density was examined on lung tissue from four spatially separate lung segments of allergic sheep which received weekly challenges with HDM allergen for 0, 8, 16 or 24 weeks. Lung tissue was collected from each segment 7 days following the final challenge. The density of tryptase-positive and chymase-positive MCs (MC(T) and MC(TC) respectively) was assessed by morphometric analysis of airway sections immunohistochemically stained with antibodies against MC tryptase and chymase. MC(T) and MC(TC) density was increased in small bronchi following 24 weeks of HDM challenges compared with controls (P<0.05). The MC(TC)/MC(T) ratio was significantly increased in HDM challenged sheep compared to controls (P<0.05). MC(T) and MC(TC) density was inversely correlated with allergen-induced increases in peripheral airway resistance after 24 weeks of allergen exposure (P<0.05). MC(T) density was also negatively correlated with airway responsiveness after 24 challenges (P<0.01). CONCLUSIONS: MC(T) and MC(TC) density in the small airways correlates with better lung function in this sheep model of chronic asthma. Whether this finding indicates that under some conditions mast cells have protective activities in asthma, or that other explanations are to be considered requires further investigation.


Subject(s)
Asthma/immunology , Asthma/pathology , Mast Cells/immunology , Mast Cells/pathology , Allergens , Animals , Antigens, Dermatophagoides , Asthma/physiopathology , Bronchoconstriction/immunology , Cell Count , Disease Models, Animal , Eosinophils/immunology , Eosinophils/pathology , Female , Lung/immunology , Lung/pathology , Pyroglyphidae/immunology , Sheep
16.
Vet Immunol Immunopathol ; 148(1-2): 172-7, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-21492942

ABSTRACT

The induction of potent mucosal immune responses able to prevent the establishment of infection at the onset of mucosal pathogen colonisation represents a desirable but challenging goal for vaccine development. Here we compare nasal vaccine delivery with intra-pulmonary vaccination using a sheep lymphatic cannulation model. Our results demonstrate that nasal delivery of a non-infective ISCOMATRIX(®) influenza vaccine does not induce primary immune responses in the lymph draining the nasal lymph nodes, suggesting that local immune responses in the lymph nodes draining the nasal cavity are relatively weak. However, this mode of delivery can boost existing immunity in the nasal lymph. Using the same adjuvant we were able to induce very potent immune responses in both blood and bronchoalveolar lavage (BAL), following intra-pulmonary delivery of ISCOMATRIX(®) influenza vaccine, even when very small doses of antigen were employed. Lung delivery could also induce comparable immune responses against other recombinant antigens mixed with ISCOMATRIX(®) adjuvant and could therefore become a method of choice for the induction of immunity to mucosal pathogens infecting the lower respiratory tract.


Subject(s)
Cholesterol/administration & dosage , Immunity, Mucosal/immunology , Influenza Vaccines/administration & dosage , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae/immunology , Phospholipids/administration & dosage , Saponins/administration & dosage , Sheep Diseases/prevention & control , Sheep Diseases/virology , Administration, Inhalation , Administration, Intranasal/veterinary , Animals , Antibodies, Viral/blood , Bronchoalveolar Lavage Fluid/virology , Drug Combinations , Influenza Vaccines/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/virology , Sheep , Sheep Diseases/immunology
17.
Hepatology ; 55(3): 941-52, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22031092

ABSTRACT

UNLABELLED: Persistently high levels of growth hormone (GH) can cause liver cancer. GH activates multiple signal-transduction pathways, among them janus kinase (JAK) 2-signal transducer and activator of transcription (STAT) 5 (signal transducer and activator of transcription 5). Both hyperactivation and deletion of STAT5 in hepatocytes have been implicated in the development of hepatocellular carcinoma (HCC); nevertheless, the role of STAT5 in the development of HCC as a result of high GH levels remains enigmatic. Thus, we crossed a mouse model of gigantism and inflammatory liver cancer caused by hyperactivated GH signaling (GH(tg) ) to mice with hepatic deletion of STAT5 (STAT5(Δhep) ). Unlike GH(tg) mice, GH(tg) STAT5(Δhep) animals did not display gigantism. Moreover, the premature mortality, which was associated with chronic inflammation, as well as the pathologic alterations of hepatocytes observed in GH(tg) mice, were not observed in GH(tg) animals lacking STAT5. Strikingly, loss of hepatic STAT5 proteins led to enhanced HCC development in GH(tg) mice. Despite reduced chronic inflammation, GH(tg) STAT5(Δhep) mice displayed earlier and more advanced HCC than GH(tg) animals. This may be attributed to the combination of increased peripheral lipolysis, hepatic lipid synthesis, loss of hepatoprotective mediators accompanied by aberrant activation of tumor-promoting c-JUN and STAT3 signaling cascades, and accumulation of DNA damage secondary to loss of cell-cycle control. Thus, HCC was never observed in STAT5(Δhep) mice. CONCLUSION: As a result of their hepatoprotective functions, STAT5 proteins prevent progressive fatty liver disease and the formation of aggressive HCC in the setting of hyperactivated GH signaling. At the same time, they play a key role in controlling systemic inflammation and regulating organ and body size.


Subject(s)
Carcinoma, Hepatocellular/prevention & control , Gigantism/physiopathology , Growth Hormone/physiology , Inflammation/physiopathology , Liver Neoplasms/prevention & control , Mortality, Premature , STAT5 Transcription Factor/physiology , Signal Transduction/physiology , Animals , Body Size/physiology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/physiopathology , Disease Models, Animal , Fatty Liver/metabolism , Fatty Liver/physiopathology , Fatty Liver/prevention & control , Hepatocytes/metabolism , Hepatocytes/pathology , Lipid Metabolism/physiology , Liver/metabolism , Liver/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/physiopathology , Mice , Mice, Transgenic , Proto-Oncogene Proteins c-jun/metabolism , STAT3 Transcription Factor/metabolism , STAT5 Transcription Factor/deficiency , STAT5 Transcription Factor/genetics , Sheep
18.
Clin Vaccine Immunol ; 19(1): 79-83, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22072721

ABSTRACT

Pulmonary delivery of an influenza Iscomatrix adjuvant vaccine induces a strong systemic and mucosal antibody response. Since an influenza vaccine needs to induce immunological memory that lasts at least 1 year for utility in humans, we examined the longevity of the immune response induced by such a pulmonary vaccination, with and without antigen challenge. Sheep were vaccinated in the deep lung with an influenza Iscomatrix vaccine, and serum and lung antibody levels were quantified for up to 1 year. The immune memory response to these vaccinations was determined following antigen challenge via lung delivery of influenza antigen at 6 months and 1 year postvaccination. Pulmonary vaccination of sheep with the influenza Iscomatrix vaccine induced antigen-specific antibodies in both sera and lungs that were detectable until 6 months postimmunization. Importantly, a memory recall response following antigenic challenge was detected at 12 months post-lung vaccination, including the induction of functional antibodies with hemagglutination inhibition activity. Pulmonary delivery of an influenza Iscomatrix vaccine induces a long-lived influenza virus-specific antibody and memory response of suitable length for annual vaccination against influenza.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Cholesterol/administration & dosage , Immunologic Memory , Influenza Vaccines/immunology , Phospholipids/administration & dosage , Saponins/administration & dosage , Vaccination/methods , Administration, Inhalation , Animals , Antibodies, Viral/analysis , Antibodies, Viral/blood , Blood/immunology , Drug Combinations , Female , Hemagglutination Inhibition Tests , Influenza Vaccines/administration & dosage , Lung/immunology , Sheep , Time Factors
19.
PLoS One ; 6(12): e28740, 2011.
Article in English | MEDLINE | ID: mdl-22174883

ABSTRACT

BACKGROUND: There is increasing evidence that the small airways contribute significantly to the pathophysiology of asthma. However, due to the difficulty in accessing distal lung regions in clinical settings, functional changes in the peripheral airways are often overlooked in studies of asthmatic patients. The aim of the current study was to characterize progressive changes in small airway function in sheep repeatedly challenged with house dust mite (HDM) allergen. METHODOLOGY/PRINCIPAL FINDINGS: Four spatially separate lung segments were utilized for HDM challenges. The right apical, right medial, right caudal and left caudal lung segments received 0, 8, 16 and 24 weekly challenges with HDM respectively. A wedged-bronchoscope technique was used to assess changes in peripheral resistance (R(p)) at rest, and in response to specific and non-specific stimuli throughout the trial. Allergen induced inflammatory cell infiltration into bronchoalveolar lavage and increases in R(p) in response to HDM and methacholine were localized to treated lung segments, with no changes observed in adjacent lung segments. The acute response to HDM was variable between sheep, and was significantly correlated to airway responsiveness to methacholine (r(s) = 0.095, P<0.01). There was no correlation between resting R(p) and the number of weeks of HDM exposure. Nor was there a correlation between the magnitude of early-phase airway response and the number of HDM-challenges. CONCLUSIONS: Our findings indicate that airway responses to allergic and non-allergic stimuli are localized to specific treated areas of the lung. Furthermore, while there was a decline in peripheral airway function with HDM exposure, this decrease was not correlated with the length of allergen challenge.


Subject(s)
Allergens/immunology , Asthma/immunology , Asthma/physiopathology , Lung/immunology , Lung/physiopathology , Pyroglyphidae/immunology , Sheep/immunology , Animals , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Cell Separation , Chronic Disease , Disease Models, Animal , Eosinophils/drug effects , Eosinophils/immunology , Female , Lung/drug effects , Lung/pathology , Methacholine Chloride/pharmacology , Pyroglyphidae/drug effects
20.
Pulm Pharmacol Ther ; 24(5): 525-32, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21356324

ABSTRACT

Large animal models have contributed to our current understanding of respiratory pathophysiology and the effects of pulmonary disease modifying drugs. For drug development, the benefit of using large animals over smaller animal species is primarily due to the greater similarity between humans and equivalent sized animals in terms of gross anatomy, morphometry, structure and physiology of their respiratory systems. Thus, when appropriate lung structure and function are required for correctly assessing the efficacy of novel drugs, large animals can play an important role in the development of these drugs to combat respiratory disease. The most widely used and best characterised large animal for drug development has been the sheep model of asthma. Recently, large animal models for chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF) have been reported but thus far have not been used extensively for drug development. Some important limitations of using large animals are the large costs associated with this type of research, as well as the poorer understanding of disease mechanisms in these species relative to rodents. In this review we discuss the extent of correlations between preclinical testing performed in large animal models and the initial indication of clinical efficacy in ongoing clinical trials.


Subject(s)
Disease Models, Animal , Drug Design , Respiratory Tract Diseases/physiopathology , Animals , Asthma/drug therapy , Asthma/physiopathology , Drug Discovery/methods , Drug Evaluation, Preclinical/methods , Humans , Respiratory Tract Diseases/drug therapy , Sheep , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...