Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 297(3): 101005, 2021 09.
Article in English | MEDLINE | ID: mdl-34314685

ABSTRACT

Barth syndrome (BTHS) is an X-linked disorder of mitochondrial phospholipid metabolism caused by pathogenic variants in TAFFAZIN, which results in abnormal cardiolipin (CL) content in the inner mitochondrial membrane. To identify unappreciated pathways of mitochondrial dysfunction in BTHS, we utilized an unbiased proteomics strategy and identified that complex I (CI) of the mitochondrial respiratory chain and the mitochondrial quality control protease presenilin-associated rhomboid-like protein (PARL) are altered in a new HEK293-based tafazzin-deficiency model. Follow-up studies confirmed decreased steady state levels of specific CI subunits and an assembly factor in the absence of tafazzin; this decrease is in part based on decreased transcription and results in reduced CI assembly and function. PARL, a rhomboid protease associated with the inner mitochondrial membrane with a role in the mitochondrial response to stress, such as mitochondrial membrane depolarization, is increased in tafazzin-deficient cells. The increased abundance of PARL correlates with augmented processing of a downstream target, phosphoglycerate mutase 5, at baseline and in response to mitochondrial depolarization. To clarify the relationship between abnormal CL content, CI levels, and increased PARL expression that occurs when tafazzin is missing, we used blue-native PAGE and gene expression analysis to determine that these defects are remediated by SS-31 and bromoenol lactone, pharmacologic agents that bind CL or inhibit CL deacylation, respectively. These findings have the potential to enhance our understanding of the cardiac pathology of BTHS, where defective mitochondrial quality control and CI dysfunction have well-recognized roles in the pathology of diverse forms of cardiac dysfunction.


Subject(s)
Acyltransferases/genetics , Cardiolipins/metabolism , Mitochondria/metabolism , Small Molecule Libraries/metabolism , Acyltransferases/metabolism , Barth Syndrome/genetics , Barth Syndrome/metabolism , HEK293 Cells , Humans , Lipidomics , Proteomics
2.
Cell Rep ; 30(12): 3949-3950, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32209457

ABSTRACT

In this issue of Cell Reports, Oemer et al. (2020) define the acyl chain composition of cardiolipin and other lipid classes in murine tissues. They then employ artificial neural networks to predict mechanisms that govern cardiolipin tissue specificity, with implications for understanding cellular pathogenesis in human disease.


Subject(s)
Cardiolipins , Lipidomics , Animals , Humans , Mice , Mitochondria , Phospholipids
3.
Hum Genet ; 137(2): 175-181, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29392406

ABSTRACT

Whole exome sequencing (WES) is an emerging technique in prenatal diagnosis. In this retrospective study, we examined diagnostic utility and limitations of WES in prenatal cases with structural birth defects. DNA from 20 trios (fetal and parental), with normal karyotype and microarray findings, underwent WES and variant interpretation at a reference laboratory. The WES results were later re-evaluated in our academic center utilizing prenatal and postnatal phenotyping. Initial analysis using only prenatal ultrasound findings revealed no pathogenic or likely pathogenic variants in 20 pregnancies with structural birth defects. Re-analysis of WES variants and combination of prenatal and postnatal phenotyping yielded pathogenic variants in at least 20% of cases including PORCN gene in a fetus with split-hand/foot malformation, as well as variants of uncertain significance in NEB and NOTCH1 in fetuses with postnatal muscle weakness and Adams-Oliver syndrome, respectively. Furthermore, Sanger sequencing in a patient with holoprosencephaly, elucidated by postnatal MRI, revealed a pathogenic 47-base pairs deletion in ZIC2 which was missed by prenatal WES. This study suggests that incomplete prenatal phenotyping and lack of prenatal ultrasound-genotype databases are the limiting factors for current interpretation of WES data in prenatal diagnosis. Development of prenatal phenotype-genotype databases would significantly help WES interpretation in this setting. Patients who underwent prenatal clinical WES may benefit from the re-analysis based on detailed postnatal findings.


Subject(s)
Congenital Abnormalities/genetics , Exome Sequencing/trends , Prenatal Diagnosis , Congenital Abnormalities/diagnosis , Congenital Abnormalities/pathology , Databases, Factual , Exome/genetics , Female , Fetus , Genotype , Humans , Male , Pregnancy , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...