Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
ACS Nano ; 17(12): 11914-11922, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37306458

ABSTRACT

Switching the crystalline phase of a material via electrostatic control is a proven strategy for developing memory devices such as memristors that are based on nonvolatile resistance switching phenomena. However, phase switching in atomic-scale systems is often difficult to control and poorly understood. Here, we explore nonvolatile switching of long 2.3 nm wide bistable nanophase domains in a Sn double-layer structure grown on Si(111), using a scanning tunneling microscope. We identified two mechanisms for this phase switching phenomenon. First, the electrical field across the tunnel gap continuously tunes the relative stability of the two phases and favors one over the other depending on the tunneling polarity. The second mechanism involves carrier injection into empty Sn orbitals. The coupling between these relatively long-lived hot electrons and surface phonons induces a lattice instability at sufficiently large tunneling current and provides access to a hidden metastable state of matter. This hidden state is nonvolatile but can be erased by choosing the appropriate tunneling conditions or raising the temperature. Similar mechanisms could possibly be exploited in phase-change memristor and field effect devices.

2.
J Phys Chem C Nanomater Interfaces ; 125(29): 16041-16048, 2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34354792

ABSTRACT

The precise positioning of dopant atoms within bulk crystal lattices could enable novel applications in areas including solid-state sensing and quantum computation. Established scanning probe techniques are capable tools for the manipulation of surface atoms, but at a disadvantage due to their need to bring a physical tip into contact with the sample. This has prompted interest in electron-beam techniques, followed by the first proof-of-principle experiment of bismuth dopant manipulation in crystalline silicon. Here, we use first-principles modeling to discover a novel indirect exchange mechanism that allows electron impacts to non-destructively move dopants with atomic precision within the silicon lattice. However, this mechanism only works for the two heaviest group V donors with split-vacancy configurations, Bi and Sb. We verify our model by directly imaging these configurations for Bi and by demonstrating that the promising nuclear spin qubit Sb can be manipulated using a focused electron beam.

3.
ACS Nano ; 12(6): 5873-5879, 2018 Jun 26.
Article in English | MEDLINE | ID: mdl-29750507

ABSTRACT

The ability to controllably position single atoms inside materials is key for the ultimate fabrication of devices with functionalities governed by atomic-scale properties. Single bismuth dopant atoms in silicon provide an ideal case study in view of proposals for single-dopant quantum bits. However, bismuth is the least soluble pnictogen in silicon, meaning that the dopant atoms tend to migrate out of position during sample growth. Here, we demonstrate epitaxial growth of thin silicon films doped with bismuth. We use atomic-resolution aberration-corrected imaging to view the as-grown dopant distribution and then to controllably position single dopants inside the film. Atomic-scale quantum-mechanical calculations corroborate the experimental findings. These results indicate that the scanning transmission electron microscope is of particular interest for assembling functional materials atom-by-atom because it offers both real-time monitoring and atom manipulation. We envision electron-beam manipulation of atoms inside materials as an achievable route to controllable assembly of structures of individual dopants.

4.
Nanoscale ; 10(1): 260-267, 2017 Dec 21.
Article in English | MEDLINE | ID: mdl-29210405

ABSTRACT

One-dimensional (1D) nanostructures are highly sought after, both for their novel electronic properties as well as for their improved functionality. However, due to their nanoscale dimensions, these properties are significantly affected by the environment in which they are embedded. In this paper, we report on the creation of 1D homo-endotaxial Si nanostructures, i.e. 1D Si nanostructures with a lattice structure that is uniquely different from the Si diamond lattice in which they are embedded. We use scanning tunneling microscopy and spectroscopy, scanning transmission electron microscopy, density functional theory, and conductive atomic force microscopy to elucidate their formation and properties. Depending on kinetic constraints during growth, they can be prepared as endotaxial 1D Si nanostructures completely embedded in crystalline Si, or underneath a stripe of amorphous Si containing a large concentration of Bi atoms. These homo-endotaxial 1D Si nanostructures have the potential to be useful components in nanoelectronic devices based on the technologically mature Si platform.

5.
Adv Sci (Weinh) ; 4(8): 1700045, 2017 08.
Article in English | MEDLINE | ID: mdl-28852622

ABSTRACT

This study demonstrates that precise control of nonequilibrium growth conditions during pulsed laser deposition (PLD) can be exploited to produce single-crystalline anatase TiO2 nanobrush architectures with large surface areas terminated with high energy {001} facets. The data indicate that the key to nanobrush formation is controlling the atomic surface transport processes to balance defect aggregation and surface-smoothing processes. High-resolution scanning transmission electron microscopy data reveal that defect-mediated aggregation is the key to TiO2 nanobrush formation. The large concentration of defects present at the intersection of domain boundaries promotes aggregation of PLD growth species, resulting in the growth of the single-crystalline nanobrush architecture. This study proposes a model for the relationship between defect creation and growth mode in nonequilibrium environments, which enables application of this growth method to novel nanostructure design in a broad range of materials.

6.
Nat Commun ; 8: 14721, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28266499

ABSTRACT

Semiconductor surfaces and ultrathin interfaces exhibit an interesting variety of two-dimensional quantum matter phases, such as charge density waves, spin density waves and superconducting condensates. Yet, the electronic properties of these broken symmetry phases are extremely difficult to control due to the inherent difficulty of doping a strictly two-dimensional material without introducing chemical disorder. Here we successfully exploit a modulation doping scheme to uncover, in conjunction with a scanning tunnelling microscope tip-assist, a hidden equilibrium phase in a hole-doped bilayer of Sn on Si(111). This new phase is intrinsically phase separated into insulating domains with polar and nonpolar symmetries. Its formation involves a spontaneous symmetry breaking process that appears to be electronically driven, notwithstanding the lack of metallicity in this system. This modulation doping approach allows access to novel phases of matter, promising new avenues for exploring competing quantum matter phases on a silicon platform.

7.
Phys Rev Lett ; 119(26): 266802, 2017 Dec 29.
Article in English | MEDLINE | ID: mdl-29328725

ABSTRACT

The physics of doped Mott insulators is at the heart of some of the most exotic physical phenomena in materials research including insulator-metal transitions, colossal magnetoresistance, and high-temperature superconductivity in layered perovskite compounds. Advances in this field would greatly benefit from the availability of new material systems with a similar richness of physical phenomena but with fewer chemical and structural complications in comparison to oxides. Using scanning tunneling microscopy and spectroscopy, we show that such a system can be realized on a silicon platform. The adsorption of one-third monolayer of Sn atoms on a Si(111) surface produces a triangular surface lattice with half filled dangling bond orbitals. Modulation hole doping of these dangling bonds unveils clear hallmarks of Mott physics, such as spectral weight transfer and the formation of quasiparticle states at the Fermi level, well-defined Fermi contour segments, and a sharp singularity in the density of states. These observations are remarkably similar to those made in complex oxide materials, including high-temperature superconductors, but highly extraordinary within the realm of conventional sp-bonded semiconductor materials. It suggests that exotic quantum matter phases can be realized and engineered on silicon-based materials platforms.

8.
Sci Rep ; 6: 30141, 2016 07 22.
Article in English | MEDLINE | ID: mdl-27443503

ABSTRACT

Strontium titanate (SrTiO3, STO) is a critically important material for the study of emergent electronic phases in complex oxides, as well as for the development of applications based on their heterostructures. Despite the large body of knowledge on STO, there are still many uncertainties regarding the role of defects in the properties of STO, including their influence on ferroelectricity in bulk STO and ferromagnetism in STO-based heterostructures. We present a detailed analysis of the decay of persistent photoconductivity in STO single crystals with defect concentrations that are relatively low but significantly affect their electronic properties. The results show that photo-activated electron transport cannot be described by a superposition of the properties due to independent point defects as current models suggest but is, instead, governed by defect complexes that interact through dynamic correlations. These results emphasize the importance of defect correlations for activated electronic transport properties of semiconducting and insulating perovskite oxides.

9.
Phys Rev Lett ; 114(25): 256801, 2015 Jun 26.
Article in English | MEDLINE | ID: mdl-26197138

ABSTRACT

We report on the use of helium ion implantation to independently control the out-of-plane lattice constant in epitaxial La(0.7)Sr(0.3)MnO(3) thin films without changing the in-plane lattice constants. The process is reversible by a vacuum anneal. Resistance and magnetization measurements show that even a small increase in the out-of-plane lattice constant of less than 1% can shift the metal-insulator transition and Curie temperatures by more than 100 °C. Unlike conventional epitaxy-based strain tuning methods which are constrained not only by the Poisson effect but by the limited set of available substrates, the present study shows that strain can be independently and continuously controlled along a single axis. This permits novel control over orbital populations through Jahn-Teller effects, as shown by Monte Carlo simulations on a double-exchange model. The ability to reversibly control a single lattice parameter substantially broadens the phase space for experimental exploration of predictive models and leads to new possibilities for control over materials' functional properties.

10.
Sci Rep ; 5: 9911, 2015 Apr 30.
Article in English | MEDLINE | ID: mdl-25927955

ABSTRACT

We introduce the concept of optical control of the fluorescence yield of CdSe quantum dots through plasmon-induced structural changes in random semicontinuous nanostructured gold films. We demonstrate that the wavelength- and polarization dependent coupling between quantum dots and the semicontinuous films, and thus the fluorescent emission spectrum, can be controlled and significantly increased through the optical extinction of a selective band of eigenmodes in the films. This optical method of effecting controlled changes in the metal nanostructure allows for versatile functionality in a single sample and opens a pathway to in situ control over the fluorescence spectrum.

11.
Sci Rep ; 4: 6259, 2014 Sep 02.
Article in English | MEDLINE | ID: mdl-25178929

ABSTRACT

The configuration and evolution of coexisting mesoscopic domains with contrasting material properties are critical in creating novel functionality through emergent physical properties. However, current approaches that map the domain structure involve either spatially resolved but protracted scanning probe experiments without real time information on the domain evolution, or time resolved spectroscopic experiments lacking domain-scale spatial resolution. We demonstrate an elegant experimental technique that bridges these local and global methods, giving access to mesoscale information on domain formation and evolution at time scales orders of magnitude faster than current spatially resolved approaches. Our straightforward analysis of laser speckle patterns across the first order phase transition of VO2 can be generalized to other systems with large scale phase separation and has potential as a powerful method with both spatial and temporal resolution to study phase separation in complex materials.

12.
Nat Commun ; 5: 4396, 2014 Jul 10.
Article in English | MEDLINE | ID: mdl-25008155

ABSTRACT

Organic spintronic devices have been appealing because of the long spin lifetime of the charge carriers in the organic materials and their low cost, flexibility and chemical diversity. In previous studies, the control of resistance of organic spin valves is generally achieved by the alignment of the magnetization directions of the two ferromagnetic electrodes, generating magnetoresistance. Here we employ a new knob to tune the resistance of organic spin valves by adding a thin ferroelectric interfacial layer between the ferromagnetic electrode and the organic spacer: the magnetoresistance of the spin valve depends strongly on the history of the bias voltage, which is correlated with the polarization of the ferroelectric layer; the magnetoresistance even changes sign when the electric polarization of the ferroelectric layer is reversed. These findings enable active control of resistance using both electric and magnetic fields, opening up possibility for multi-state organic spin valves.

13.
Nanoscale ; 5(20): 9659-65, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-23979041

ABSTRACT

The oxygen stoichiometry has a large influence on the physical and chemical properties of complex oxides. Most of the functionality in e.g. catalysis and electrochemistry depends in particular on control of the oxygen stoichiometry. In order to understand the fundamental properties of intrinsic surfaces of oxygen-deficient complex oxides, we report on in situ temperature dependent scanning tunnelling spectroscopy experiments on pristine oxygen deficient, epitaxial manganite films. Although these films are insulating in subsequent ex situ in-plane electronic transport experiments at all temperatures, in situ scanning tunnelling spectroscopic data reveal that the surface of these films exhibits a metal-insulator transition (MIT) at 120 K, coincident with the onset of ferromagnetic ordering of small clusters in the bulk of the oxygen-deficient film. The surprising proximity of the surface MIT transition temperature of nonstoichiometric films with that of the fully oxygenated bulk suggests that the electronic properties in the surface region are not significantly affected by oxygen deficiency in the bulk. This carries important implications for the understanding and functional design of complex oxides and their interfaces with specific electronic properties in catalysis, oxide electronics and electrochemistry.

14.
Phys Rev Lett ; 110(23): 237601, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-25167529

ABSTRACT

The crystal and magnetic structures of single-crystalline hexagonal LuFeO(3) films have been studied using x-ray, electron, and neutron diffraction methods. The polar structure of these films are found to persist up to 1050 K; and the switchability of the polar behavior is observed at room temperature, indicating ferroelectricity. An antiferromagnetic order was shown to occur below 440 K, followed by a spin reorientation resulting in a weak ferromagnetic order below 130 K. This observation of coexisting multiple ferroic orders demonstrates that hexagonal LuFeO(3) films are room-temperature multiferroics.

SELECTION OF CITATIONS
SEARCH DETAIL
...